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1. List of Abbreviations 

AA   acrylic acid 

AFM   atomic force microscopy 

AEMH   amino-ethyl methacrylate hydrochloride 

APS   ammonium peroxodisulfate 

BA   n-butyl acrylate 

BCA   butyl cyanoacrylate 

BODIPY  4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene 

c   concentration 

CLSM   confocal laser scanning microscopy 

CMTE   cis-1,2-dicyano-1,2-bis-(2,4,5-trimethyl-3-thienyl)ethene 

CO2   carbondioxide 

CTMA-Cl  cetyltrimethylammonium chloride 

d   days 

D   diameter 

DLS   dynamic light scattering 

DMEM   Dulbecco´s Modified Eagle Medium 

DMSO   dimethyl sulfoxide 

eqn   equation 

FCS   fetal calf serum 

FRET   Förster resonance energy transfer 

fura-2 AM  acetyloxymethyl 2-[5-[bis-[2-(acetyloxymethoxy)-2-oxoethyl]amino]-4-

[2-[2-[bis-[2-(acetyloxymethoxy)-2-oxoethyl] amino]-5-methyl-

phenoxy]-ethoxy]-1-benzofuran-2-yl]-1, 3-oxazole-5-carboxylate 

h   hours 

HBSS   Hank´s Balanced Salt Solution 

HCl   hydrochloric acid 

HD   hexadecane 

HEPES   4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid 

KCl   potassium chloride 

λem   emission wavelength 

λex   excitation wavelength 
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MES   2-(N-morpholino) ethane sulfonic acid 

min   minutes 

MVB   multi vesicular body 

NaOH   sodium hydroxide 

NaPSS   poly(sodium styrene sulfonate) 

NH4OH   ammonia solution 

Nlarge   number of large particles 

NP   nanoparticle 

Nsmall   number of small particles 

PAA   poly(acrylic acid) 

PBA   poly(butyl acrylate) 

PBA-PS  poly(butyl acrylate) particles covered with an additional polystyrene 

shell 

PBCA   poly(butyl cyanoacrylate) 

PDADMAC  poly(diallyldimethyl ammoniumchloride) 

PESNa   sodium polyethylene sulfonate 

PMI   N-(2,6-diisopropylphenyl)-perylene-3,4-dicarboximid) 

PMMA   poly(methyl methacrylate) 

PS   polystyrene 

PS-PS   polystyrene particles with additional polystyrene shell 

Rh   hydrodynamic radius 

rpm   round per minute 

RT   room temperature 

SBFI AM  bis-(acetyloxymethyl) 4-[6-[13-[2-[2, 4-bis-(acetyloxymethoxy 

carbonyl)phenyl]-5-methoxy-1-benzofuran-6-yl]-1, 4, 10-trioxa-7, 13-

diazacyclopenta-dec-7-yl]-5-methoxy-1-benzofuran-2-yl]benzene-1,3-

dicarboxylate 

SC   solid content 

SDS   sodium dodecyl sulfate 

SEM   scanning electron microscopy 

σ   standard deviation 
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SNARF-1  5´ (and 6´) carboxy-10-dimethylamino-3-hydroxy-spiro-[7H-benzo[c]-

xanthene-7,1´(3´H)-isobenzo-furan]-3´-one 

SNARF-1-AM  SNARF-1 acetoxymethyl ester acetate 

SNARF-1-NHS  SNARF-1 acetate succinimidyl ester 

SNARF-1-NP  SNARF-1 labeled nanoparticle 

St   styrene 

t   time 

T   temperature 

t1/2   half-life time 

Tg   glass transition temperature 

TEM   transmission electron microscopy 

VA-044  2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride  

V59   2,2'-azobis(2-methylbutyronitrile) 
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2. Abstract 

In this thesis the physico-chemical properties of colloids and their self-assembled structures 

are investigated in detail. The focus lies on the fundamental investigation of colloids, their 

interfacial behavior during self-assembly processes and the influence of the colloid´s local 

environment on the physico-chemical properties.  

A novel, versatile entrapment technique was developed to investigate colloids and their 

interfacial equilibrium position directly at the air-water interface. The entrapment enables to 

investigate the contact angle position ex situ in an scanning electron microscope (SEM), 

allowing determining local contact angles even for single nanoparticles. The crystallization of 

nanoparticles into highly crystalline close-packed architectures is well-understood. But as 

the structure of such colloidal monolayers is limited to hexagonal geometry new techniques 

have to be developed to create new and more complex architectures. Here, the amphiphile-

driven self-assembly approach at the air-water interface of a Langmuir trough is introduced 

to create reproducibly network- or chainlike packing as well as colloidal assemblies with a 

pseudo-square lattice. This technique provides the advantage of not using any additional 

special equipment or pre-treated template substrates as it is commonly used to yield 

anisotropic self-assembly of colloids. The influence of polymer composition, concentration 

and manipulation of the electrostatic environment on the chain-like and square 

arrangements is investigated in detail.  

The self-assembly of colloids at the air-water interface is also used to create highly 

functional two-dimensional colloidal monolayers. The approach of the binary co-assembly of 

template and functional photoswitchable colloids into complex binary monolayers is used to 

create locally separated light-responsive nano-pixels as a model system for optical data 

storage application.  

Moreover, functional and trigger responsive nanoparticles are also useful for drug delivery 

applications in nanomedicine as presented in this work. By functionalization of nanoparticles 

with a pH responsive dye the path of nanoparticles or nanocapsules through cells can be 

monitored. Again, localized properties of the nanoparticles and their direct environment can 

be investigated in detail. Based on the results, drug carriers such as nanocapsules can be 

designed to release their payload at a distinct position inside the cell upon change of the pH 

value.   
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3. Introduction and Outline 

Nature’s ability to form materials with highly complex internal structures from relatively 

simple building blocks continues to capture scientists´ imagining. Though extremely complex 

in their structural organization, all materials and organisms can be broken down into even 

smaller building blocks. These, even though they seem small and unimportant, generate the 

functionality of the entire complex system upon assembly into superstructures with 

increasing complexity. A very simple analogy can be found in children’s playroom. LEGO® 

stones for instance that appear in different sizes, shapes and colors are also very simple 

building blocks in the centimeter scale from which impressive macroscopic objects can be 

assembled in the meter scale. But it is not possible to just stick them chaotically and 

purposeless together to end up with well-defined architectures. Instead, a systematic plan 

and design rules need to be followed where every stone placed on another has a special 

function an affects its environment. Appropriate stones with distinct color, size and shape 

need to be chosen which form small sub-structures that in turn can be assembled in the 

right way to complete the construction. This design principle is called a bottom-up process. 

Of course, this thesis does not focus on the design of macroscopic objects from LEGO® 

stones. Nevertheless; the essence of the construction principle remains the same with much 

smaller building blocks. 

Within this work, the essential building blocks are colloidal particles. Similar to LEGO® stones 

there exist a variety of nanoparticles of different material, shape, size, functionality or 

responsiveness. A single nanoparticle might be not impressing at first glance. When self-

assembled at the air-water interface, these simple particles transform into highly crystalline, 

two dimensional colloidal arrangements. This process, first investigated by Pieranski[1] in 

1980 is a powerful platform used by material scientists for a variety of applications, ranging 

from surface-patterning with nanoscale dimension,[2, 3] via photonic and opalescent 

structures that mimic the complex structural coloration found in nature,[4] to sophisticated 

bio-sensing architectures capable of detecting analyte molecules with astonishing 

sensitivity.[5-10] The isotropic self-assembly of nanoparticles at the air-water interface into 

hexagonal close-packed arrangements is well-understood on a micro- and also macroscopic 

scale. Several interacting forces like electrostatics, van der Waals or capillary forces are 

balanced at the air-water interface and enable the particles to self-assemble into two-
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dimensional crystals with hexagonal symmetry, which is described in the theoretical 

considerations. But more detailed information about the local physico-chemical properties 

of single particles and the colloid´s direct environment are very rare and hard to collect due 

to the small size of these building blocks.  

The more detailed investigation of fundamental problems in colloidal interaction on the 

nano-scale is of great importance if we want to understand how to manipulate and control 

processes to our benefit. Anisotropic self-assembly of nanoparticles into more complex 

structures for instance is so far not really reproducible and not well-understood. To create 

more complex arrangements, experimentally difficult processes such as nanoscale 

templating or the design of nanoparticles with defined patches need to be employed.[11, 12] 

However, such materials promise the extension of properties towards materials with novel 

optical and physical properties. Alternatively, they can serve as masks with more complex 

geometries that find applications in lithographic approaches to create nano-structured 

arrays with outstanding optical and plasmonic properties.[7, 10, 13] 

This work focuses on the investigation of physico-chemical properties of colloids, their self-

assembled structures at the air-water interface and on the determination of characteristics 

of the colloid´s environment with high local resolution. 

The thesis is sub-divided into different chapters. First, a short overview is given about colloid 

self-assembly at the air-water interface and the involved stabilizing and destabilizing forces. 

Then different architectures that can be formed during the colloidal self-assembly process 

into two-dimensional monolayers are highlighted (chapter 4). Afterwards, a short 

introduction is given into the main characterization techniques used in this thesis (chapter 

5).  

The results and discussion chapter is divided into four sub-chapters. In the first part (chapter 

6.1) colloids and their self-assembled structures are investigated in detail concerning their 

interfacial equilibrium position directly at the air-water interface by a novel gas phase 

induced interfacial polymerization technique. Thereby, contact angles of individual colloids 

of different size and composition at aqueous interfaces can be determined. Afterwards, the 

amphiphile-driven self-assembly process at the air-water interface of a Langmuir trough is 

introduced and the creation of more complex two-dimensional architectures such as chain-
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like and pseudo square arrangements in a simple and reproducible way is demonstrated 

(chapter 6.2).  

This first chapter is followed by the presentation of a functional binary colloidal monolayer 

with photo-responsive spatially separated nano-pixels which serves as a model system for 

optical data storage applications (chapter 6.3). 

The last chapter is based on another fundamental question of nanoparticles and the 

environmental interaction. Here, stimuli responsive nanoparticles functionalized with a pH 

sensitive dye are used to record the pathway through a cell and the variance of the pH upon 

different transport processes of the particles inside the cell (chapter 6.4). 

The results of each chapter are discussed, conclusions are drawn and also an outlook is 

given. The experimental details can be found in chapter 7. 
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4. Theoretical Considerations 

4.1. Colloid Stability and Forces at the Air-Water Interface 

Dispersed systems are widely known in our everyday life for instance in food industries such 

as milk, as paints for automotive industries or as pigments in dispersion, as well as in lotions 

and creams. An essential attribute of such systems is the stability of the containing of the 

dispersed phase, droplets or particles against flocculation or coagulation. The colloid stability 

in a continuous medium is a complex multi-body problem with multiple repulsive and 

attractive forces acting on an individual dispersed particle. To create a stable dispersion, 

attractive van der Waals forces need to be counterbalanced by repulsive electrostatic forces. 

This balance of forces is described by the DLVO theory. Repulsive electrostatic, steric and 

attractive van der Waals forces equilibrate to result an overall interaction potential which 

can be described by the DLVO theory. This theory was independently discovered by two 

groups in the 1940s, the Russian physicists Derjaguin and Landau[14, 15] and the Dutch 

chemists Verwey and Overbeek[16] who are eponym of the theory. The DLVO theory 

describes colloidal interactions in bulk dispersion. However, if placed at an interface, a 

colloid experiences another set of forces not present in bulk dispersion. But especially for 

self-organization of colloids or two-dimensional assembly of nanoparticles into densely 

packed crystals also interfacial forces such as capillary forces and dipole-dipole interactions 

at the air-water interface need to be taken into account.  

In this chapter, the DLVO theory is described as well as the interplay of the forces affecting 

colloids at interfaces such as air-liquid or liquid-solid surfaces. This latter is essential to 

understand crystallization processes and the manipulation of self-organizing systems as they 

are presented in this work. 

 

4.1.1. Electrostatic Interactions 

Colloids and especially nanoparticles are able to interact electrostatically if they carry 

charges on the particle surface. This interaction can be of attractive or repulsive nature 

depending on the charge of the individual particles. Considering the presence of equally 

charged colloids the electrostatic interaction is repulsive. In dispersions the colloids are 
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surrounded by an electric double layer which can be described using a combination of 

different models. Gouy-Chapman, Stern and Grahame approximate a colloid surface as a 

plane charged plate alike a plate capacitor.[17, 18] As it is presented in Figure 1 the electric 

double layer, which is created in an electrolyte environment, can be subdivided into 

different layers.  

 

Figure 1 A) Scheme for the formation of an electrical double layer of a charged surface 
placed in an electrolyte solution correlated with the surface potential (Ψ(x)) in dependence 
on the distance (x) from the charged surface. B) The diagram displays the variation of the 
electrical double layer thickness labeled by the Debye length (κ-1) and the different zeta-
potentials (ζ) with increasing electrolyte concentration. 

 

The first plane is the so-called Stern layer with surface potential ΨStern that can be divided 

into the inner and the outer Helmholtz layer. The inner Helmholtz plane includes water 

molecules and non-solvated co-ions equally charged as the charged surface that adsorb 

strongly on the particle surface. The presence of non-solvated like-charged ions results in an 

increased surface potential (Ψ0) compared to the charged surface itself. The outer Helmholtz 

plane consists of larger, completely hydrated counter ions in their closest distance to the 
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charged surface. The surface potential Ψ(x) decreases linearly from the initial surface 

potential with increasing distance (x) from the charged surface. Thermal motion leads to the 

formation of a diffuse disordered state of the double layer of different charged ions behind 

the outer Helmholtz plane. The surface potential at the outer Helmholtz plane represents 

the Stern potential (ΨStern). Here, the surface potential decreases exponentially with 

increasing distance x following a Poisson-Boltzmann equation.[19] For electrical double layers 

with a potential < 25 mV the surface potential can be expressed by the equation 1. At the so-

called zeta-potential which is the electrokinetic potential of the diffuse double layer all ions 

between the charged surface and the shear plane remain near the particle surface although 

the colloids move through the dispersion. The Debye-Hückel theory describes the 

distribution of charged ions in a solution. Similar to atoms in a crystal lattice positive ions are 

surrounded by negative ones and vice versa. Due to thermal motion the ions are not fixed in 

their position and can move within the solution. But in the average state an ion is 

surrounded by a contrary charged ion cloud that shields the central ion. The value of this 

screening length is also called the Debye length κ-1 (eq. 2). It describes the thickness of the 

electrical double layer at which the surface potential has decayed to a value of Ψ0/e. 

   xexpx
0

    (eq. 1)[19]
 

IeN

Tk
2

A

B01

2


 

   (eq. 2)[20] 

Here, ε0 stands for the permittivity in vacuum, ε for the dielectric constant, kB for the 

Boltzmann constant, T for the temperature in Kelvin, e for the elementary charge, NA for the 

Avogadro constant and I for the ionic strength.[20] The electrolyte concentration has a drastic 

influence on the stability of the colloid dispersion. As can be seen in Figure 1 the surface 

potential decays faster with increasing electrolyte concentration. The diffuse layer is even 

more compressed at high salt concentrations which results in a lower potential at the shear 

plane. The valence of the electrolyte ions also controls the rate of the surface potential 

decay. Using for instance Al3+ instead of Na+ ions leads to a much faster coagulation which is 

described by Schulze-Hardy rule.  
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4.1.2. Van der Waals Interactions 

Contrary to the repulsive electrostatic forces at large distances from the colloid surfaces at 

short distances strong attractive forces drive the colloids to coagulate. These short ranged 

forces are described by van der Waals attraction, which are based on molecular dipole-

dipole interactions. Thereby, different attractive dipole interactions can occur between 

permanent dipoles (Keesom, VKeesom), permanent and induced dipoles (Debye, VDebye) or 

between completely induced dipoles (London, VLondon). All appearing forces are incorporated 

in the van der Waals potential (VvdW) which is inversely proportional to the colloid distance 

such as VvdW ~ x-6 (eq. 3): 

6

2,1
LondonDebyeKeesomVdW

x

C
VVVV    (eq. 3) 

The constant C1,2 contains all important information about dipole moments, polarizability or 

ionization energies of the two particles as the van der Waals interactions are highly 

anisotropic and depend on the relative orientation of the dipoles. When macroscopic objects 

such as colloids and particles interact with each other the van der Waals force is integrated 

over the total volume of the spherical particle. For to spheres with radii r1 and r2 the van der 

Waals potential can be described by Derjaguin´s approximation with the surface shape of 

the two approaching spheres as two plates with distance x.  

 21

21H
spheresphere

rr

rr

x6

A
V


   (eq. 4) 

212,1
2

H CA     (eq. 5) 

Here, AH stands for the Hamaker constant describing the power of two interacting particles 

and depends on the material, with the number of atoms per volume unit of the spheres (ρ1 

and ρ2) as well as the surrounding dispersion medium. If r1 = r2 = R the van der Waals force 

can be described with Derjaguin´s approximation as 

x6

RA
V H

spheresphere    (eq. 6) 
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4.1.3. DLVO Theory 

The DLVO theory combines attractive and repulsive forces to an overall energy potential 

VDLVO in dependency of the distance x of two approaching colloids as it is presented in Figure 

2 and by equation:  

  vdWBornDLVO VxVV     (eq. 7) 

Additional to the already discussed attractive van der Waals (VvdW) and the repulsive 

electrostatic interactions (Ψ(x)), the Born repulsion of two hard approaching spheres needs 

also to be considered for very short distances. 

 

Figure 2 Scheme for the surface potential VDLVO of two approaching charged colloids 
depending on the distance x and attending repulsive electrostatic interactions (Ψ(x)), the 
Born repulsion of two hard spheres (VBorn) and the attractive van der Waals forces (VvdW). 

Here, two charged, hard spheres come closer which leads to an overlap of the surrounding 

ion clouds and a strong and sharp increase in the surface potential (VBorn) as they are not 

able to approach more than their radii.  

At large colloid distances (x) the colloidal spheres are stabilized by electrostatic interactions 

and repulsion of their like-charged surrounding ion clouds. A small first energy minimum can 
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be formed where flocculation of the colloids can appear. In general such a flocculation is 

reversible and colloids can be redispersed by mild energy input such as shaking. 

If the particles approach even more the surface potential increases and forms an energy 

barrier which is mainly characterized by the electrostatic repulsion between the particles. 

This energy barrier can be decreased by the addition of salts. As described before, the 

electric double layer is compressed and the particles can approach closer resulting in 

irreversible coagulation of the particles as the dominating forces are attractive van der 

Waals interactions at small distances. The coagulation is irreversible because of the strong 

energetic minimum. Destabilization of the colloidal systems is the consequence. 

 

4.1.4. Forces at the Air-Water Interface Not Considered in 

DLVO Theory 

Especially when working at interfaces such as air-liquid or liquid-liquid interfaces DLVO 

theory cannot exclusively explain all appearing phenomena. Nanoparticles with surface 

functionalities, such as polystyrene colloids copolymerized with acrylic acid in a typical 

surfactant-free emulsion polymerization,[21] carry statistically distributed carboxylic groups 

on the particle surface. These functional, charged groups stabilize the colloids 

electrostatically against coagulation. Due the minimization of surface energy the particles 

are trapped at the air-water interface.[1, 19] Geometrically, they are partly immersed into the 

water phase and act similar to an amphiphilic molecule or surfactant with a polar hydrophilic 

head group and a hydrophobic tail. The carboxylic groups of the immersed part of the colloid 

are dissociated extensively compared to the groups localized on the colloidal region 

protruding out of the water phase which is schematically shown in Figure 3.[22, 23]  
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Figure 3 Orientation of repulsive dipole moments originating from heterogeneously 
distributed surface charges or asymmetric ion clouds for two colloids at the air-water 
interface.  

Pieranski[1] proposed an additional electrostatic repulsion of the particles considering the 

formation of dipole moments directed perpendicular to the air-water interface which is 

represented by equation 8. 
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    (eq. 8) 

Here, x stands for the distance between the particle centers, Qx for the charge of the 

dissociated functional groups in two-dimensions, κx
-1 for the Debye length and ε for the 

dielectric conductivity of the medium between the two particles. 

The Contact Angle of Particles at Interfaces and Capillary forces 

The presence of colloids located at a liquid interface leads to a deformation of the water 

surface and of the creation of menisci depending on the properties of the liquid as well as 

the size, material and functionalization of the particles. The particles have distinct contact 

angles at the liquid interface which is schematically shown in Figure 4.  
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Figure 4 Capillary forces appearing between particles at a liquid interface induced by 
deformation of the interface and menisci formation, A) flotation force and B) immersion 
force. 

At liquid interfaces hydrophobic nanoparticles typically have a contact angle Θ > 90° and 

hydrophilic colloids Θ < 90° with hydrophilic functionalization such as amines, hydroxyl, 

sulfate, phosphate or carboxylic groups, always depending on the liquid medium and the 

particle wettability.[24, 25]
  The appearing lateral capillary forces can either be of attractive or 

repulsive nature. So called flotation forces (Figure 4A) that deform the interface typically 

arise in the presence of heavy and large particles (diameter of several µm) due to gravity and 

the buoyancy force.[25]  When the particles are equal in size the flotation force can be 

described by a Bessel function K1:[19] 

   qLKRF 1
6

Float    (eq. 9) 

Here, R stands for the particle radius, γ for the interfacial tension, L is the distance between 

the two particle centers and K1 represents the Bessel function depending on the radii of the 

three phase contact line and the capillary length q. 

g
q 1





Δ


  (eq. 10) 

The capillary length is described by the acceleration due to gravity (g), the interfacial tension 

(γ) and the density differences Δρ of the media. 

Immersion capillary forces (Figure 4B) usually appear between particles in thin films or on a 

substrate with a liquid contact line smaller than the particle diameter. Here, the contact line 

is deformed due to different wettability of the particles in the absence of gravitational 

forces. The immersion force for equally sized colloids can be described using: 

 qLKRF 1
2

mIm     (eq. 11) 

The flotation force increases with decreasing interfacial tension and additionally, decreases 

stronger with smaller particle radius than the immersion force. Different wettability can be 

based for example on the material of the nanoparticle, heterogeneities of functional groups 

covering the particle surface, and the surface topography or particle roughness, respectively. 
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These differences can induce capillary multi-poles which can affect the stability of particle 

stabilized emulsions or foams as well as on the two-dimensional particle self-assembly at 

fluid interfaces.[26, 27] The long, normally attractive capillary forces are in the range of van der 

Waals interactions and can extend to several hundreds of nanometers. Thus, they are mostly 

responsible for the well-known two-dimensional crystallization of nanoparticles at the air-

water interface into highly ordered hexagonal colloid packages.[26, 28] 

Depletion Interactions 

Beside all afore mentioned interactions also attractive hydrophobic interactions known as 

bridging flocculation between polymeric chains of adsorbed amphiphilic molecules, 

surfactants or dissolved polymers in solution with colloids can occur.[29-32] Once the particle 

surface is fully covered with adsorbed or covalently bound polymeric chains the colloid is 

sterically stabilized. This kind of stabilization is based on the interactions of the polymeric 

chains if two covered particles approach. On the one hand, the entropy is lowered as the 

polymeric chains would have less possible configurations or degrees of freedom to rotate 

and move if there are other surrounding polymers. On the other hand, an osmotic pressure 

and solvent flow is generated if the polymeric chains approach as they displace dispersive 

medium which leads to a concentration imbalance.[33] Dissolved non-adsorbing polymers in 

the direct vicinity of colloids can also force the particles to mostly reversibly form clusters or 

aggregates also in two dimensions at an interface, which is also known as depletion 

interaction. Here, the system reduces its total energy by entropic effects and an increase of 

the polymer coil´s degree of freedom by phase separating small polymers from the 

colloids.[31, 32] 

 

4.2. Structure Control in Two-Dimensional Crystallization of 

Colloids 

The understanding of two-dimensional self-assembly of colloids into defined and well-

ordered hierarchical structures is of great importance in science or technology and has been 

studied intensely during the last decades. The formation of colloidal crystals from simple 

building blocks such as polymeric nano- to micrometer sized spherical particles can be a 
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powerful tool for materials scientists. The following chapters will concentrate on the self-

assembly process of nanoparticles at the air-water interface. The focus lies on how 

functionality of nanoparticles and structure control in the self-assembly process can be used 

to create novel devices and coatings with interesting physico-chemical properties that can 

be further used as a platform or template in nano-lithographic approaches. 

 

4.2.1. Hexagonal Close-Packed Colloidal Monolayers 

Typically, well-ordered hexagonal densely packed colloidal monolayers are formed when 

nanoparticles are self-assembled at an interface. Pieranski[1] first reported on colloid 

crystallization of polystyrene spheres at the air-water interface in 1980 and described how 

particles are strongly trapped at an air-water interface. Since the discovery of 2D colloidal 

crystals, various methods have been developed to create such assemblies  Such colloidal 

crystals can be easily obtained by various methods working or instance with direct assembly 

methods using solid substrates such as vertical,[34] horizontal,[35] or electrostatic 

deposition,[36] or spin-coating.[37, 38] Further, also interface-mediated assembly methods such 

as the Langmuir trough approach are well established to crystallize nanoparticles either at 

the air-water or liquid-liquid interface.[39] Several attempts have focused on further 

modifying the self-assembly process at the air-water interface to yield large-area defect-free 

colloidal crystals. Especially pH variation,[40] adjustment of the ionic strength by salt addition, 

or simple modification of the particle´s spreading process at the interface[41, 42] can be used 

to obtain even better crystallization results. But also electric[43] and magnetic field[44] assisted 

self-assembly approaches are used to assemble functional particles loaded with magnetic 

entities that are able to orientate their dipoles in the direction of the applied 

electromagnetic force field. 

Materials produced by self-organization of colloids find application in various research fields 

such as surface patterning,[2, 3] photonics in opalescent structures,[4] or bio-sensing.[45] 

Inspired by nature, particle-based microstructures can be used to produce biomimetic self-

cleaning surfaces similar to the superhydrophobic surface of the lotus leaf.[46] The lotus plant 

can easily repel dust and water caused by sub-micrometer sized pillars as surface 

topography covered with a special hydrophobic wax, which is well known as the lotus 
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effect.[47-49] Furthermore, self-assembled colloidal structures can be used for instance for 

nanosphere lithography applications as it has been shown by van Duyne et al.[6] and 

others.[50, 51] The assembled nanoparticles can serve as masks for the creation of ordered 

arrays of metal nanostructures in the micro- and nanometer range after applying a metal 

evaporation or metal sputtering process. Such small metal structures support localized 

surface plasmon resonances applicable for enhancing Raman signals or to detect binding of 

biomolecules.[5, 9, 10, 13, 45, 52] 

4.2.2. Binary Colloidal Monolayers 

To meet the more and more challenging and complex requirements of science and 

technology it is of great importance to find solutions to create complexity from simple 

building blocks. For sure, common hexagonal monolayers provide a wide range of properties 

such as in the field of photonics and phononics. But also their functionality is somehow 

limited to simple geometries. To increase the versatility of achievable assembly structures, 

binary monolayers can provide more complex systems. They consist of a particle mixture of 

small colloids (S) and larger particles (L). The large particles form a hexagonal lattice, 

whereas the small colloids are localized in the interstitial sites of the monolayer. Depending 

on the size ratio of the colloids and on the number ratio of small to large particles different 

configurations are possible, usually denoted as LSn which is schematically shown in Figure 5. 

 

Figure 5 Examples for possible crystal structures in binary colloidal monolayers.  
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There are several possibilities how to self-assemble colloids in a binary crystal. The easiest 

way is a one-step process, where large and small colloids are mixed and co-self-assembled 

simultaneously at the air-water interface.[53, 54] Detrich et al.[55] introduced a Langmuir 

trough-based self-assembly of silica nanoparticles at the air-water interface but they were 

not able to gain a precise control over the stoichiometry. As published by Vogel et al.[56] in 

2011, the crystal structure can be tailored more precisely by careful adjustment of the 

number ratio of large to small particles. They also used a Langmuir trough for the assembly 

but controlled the number ratio of small to large particles at the air-water interface. With 

high crystallinity over a large scale the binary colloidal crystals can serve as lithographic 

platform for the creation of more complex nanostructures applicable for instance in surface 

patterning and plasmonics.[3, 5, 6]  

 

4.2.3. Non-Close-Packed Colloidal Monolayers 

During the last years the creation of even more sophisticated structures and lithographic 

masks has become increasingly important. Scientist investigated in more detail how 

anisotropic self-assembly of colloids can be controlled and how it can be realized to create 

new complex materials from the same building blocks that are widely used in 

nanolithography. There are several ways to control the self-assembly process of 

nanoparticles to form non-conventional architectures with potentially interesting physico-

chemical properties for materials scientists and technology. In the research field of 

nanosphere lithography for instance even more sophisticated lithographic approaches exist 

to create highly symmetrical colloidal monolayers. Non-closed packed anisotropic structures 

can be obtained with individual particles separated spatially by applying an additional size 

reduction step. For instance a plasma etching process can be used after the self-assembly to 

decrease the particle size depending on the gas flow, the applied power and the etching 

time.[40] Following a similar approach, ordered arrays of metal nanoparticles can be created 

by incorporation of metal complexes into the nanoparticles. After size reduction and thermal 

annealing pure metal nanoparticles remain.[40] Here, the monolayers do not serve as 

templates for metal evaporation-mediated nanostructure formation as it is used in classical 

nanosphere lithography. The metal is already incorporated in the polymeric matrix[57, 58] 
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using less and cheaper source materials which is cost-saving and straight forward for 

instance applicable for data storage. 

Another possibility for building new, non-conventional symmetries is the template assisted 

self-assembly of nanoparticles. By manipulating the surface topography of the substrates 

even common spherical particles can be organized into various interesting microstructures; 

for instance in lines with controllable line interspacing,[59-64] in holes as two-dimensional 

small, well-ordered clusters depending on the hole and particle size[60, 65-67] or on top of 

pillars.[56, 68] Such patterning methods provide the possibility to design future devices with 

well-defined functional regions with precisely assembled colloids. Also the attractive 

interaction of positive and negative charges of electrodes and particles can be used for a 

directed self-assembly as has been shown for instance by Tien et al.[69] or Fulda et al.[70] in 

the late 1990s.[71] Beside the physical or mechanical manipulation of the substrate, also 

chemical modification of either the substrate or the particles can be used to create binding 

affinity[72-74] or special binding patches of the particles on the substrate or between the 

particles themselves. A famous method for such a directed self-assembly is to employ 

preferred interactions between special molecules or functional groups such as the chemical 

modification with DNA strands.[75-78] Here, the idea is to functionalize the particles with a 

special DNA sequence and to modify the substrate with the matching counterpart of the 

DNA sequence. As the DNA strongly assembles by combining their nucleobases cytosine (C), 

guanine (G), adenine (A) and thymine (T) by base pairing A and T or C and G over strong 

hydrogen bonding, the modified particles assemble preferably on the treated patterns of the 

substrate. But there are rather more possibilities as has also been shown by Wang et al.[79], 

Pine et al.[80] or Glotzer et al.[74, 81] to create so-called patchy particles with various 

heterogeneous surface modification of multiple materials.[74, 81-83] The colloidal particles are 

designed similarly to hybridized atomic orbitals, thus giving access to self-assembly into 

colloidal molecules of very defined and controllable structures. 
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5. Characterization Techniques 

5.1. The Langmuir Trough  

The preparation of monomolecular layers of amphiphiles floating at the air-water interface is 

well known from the beginning of the 20th century and were first systematically investigated 

by the Nobel prize winner Irving Langmuir and Katherine Blodgett.[84, 85] These films, also 

known as Langmuir films, mostly consist of amphiphilic molecules with a hydrophilic head 

group and a hydrophobic tail such as fatty acids, esters or alcohols and are spread in volatile 

organic solvents directly at the air-water interface. Using a poly(1,1,2,2-tetrafluoroethylene) 

(PTFE) Langmuir-Blodgett trough equipped with a film balance and with moveable barriers 

the monomolecular interfacial film can be compressed (Figure 6).  

 

Figure 6 Langmuir trough from KSV Nima equipped with film balance and Wilhelmy plate, 
moveable barriers and dipper for Langmuir-Blodgett transfer. 

Upon compression the molecules are forced to come closer together and interact with each 

other creating a surface pressure, dedicated as Π. This pressure can be measured with the 

Wilhelmy plate method. Here, a filter paper Wilhelmy plate is partly immersed in the water 

subphase of the Langmuir trough (Figure 7).  

The force difference (ΔF) of an ideal wettable Wilhelmy plate is measured between the pure 

water interface ( F


0) and the interface which is covered with the amphiphilic monolayer ( F


) 

(eq. 12, 13). 
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Figure 7 Scheme for a Wilhelmy plate with length l, width w, thickness t, immersion depth 

into the water subphase h, contact angle Θ and force F


 acting on the plate that is partly 
immersed in the water subphase. 

 

  ghwtcostw2gltF 2010  


  (eq. 12) 

  ghwtcostw2gltF 21  


  (eq. 13) 

Here, ρ1 stands for the density of the Wilhelmy plate, ρ2 for the density of the subphase, g 

stands for the weight, l for the length, t for the thickness, w for the width and h for the 

immersion depth of the Wilhelmy plate. Furthermore, the forces are characterized by the 

interfacial tension of pure water (γ0) and the surface covered with a Langmuir film (γ) 

Assuming an ideal wettable Wilhelmy plate with a static contact angle of Θ = 0° and a 

constant immersion depth h the force difference can be calculated as it is shown: 

  tw2FFF 00  


  (eq. 14) 

The surface pressure (Π) is defined as the difference between the surface tension of pure 

water (γ0) and the reduced surface tension in the presence of surface active species in the 

Langmuir film (γ). The final expression for the surface pressure Π is shown in equation 15: 

)tw(2

F







   (eq. 15) 
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During compression Π increases and different phase transition states of the monolayer can 

be seen from surface pressure-area isotherms as well as the area covered by a single 

molecule (Figure 8).  

 

Figure 8 Exemplary surface pressure–area per molecule isotherm for the compression of an 
amphiphile at the air-water interface of a Langmuir trough with different phase transitions 
from gaseous (g), to liquid-expanded (le), liquid-condensed (lc) to solid-condensed (sc). 

In early compression states the monolayer is characterized by a “gaseous-like” behavior (g). 

Here, the molecules are randomly distributed on the water subphase not interacting with 

each other except elastic collision similar as a three-dimensional ideal gas. Further 

compression leads to an increase in surface pressure and a “liquid-like” behavior where the 

molecules start to interact with each other and form a close package often called as “liquid-

expanded” (le) where the hydrophobic chains stay flexible. When the interfacial film is 

compressed even further, the hydrophobic chains of the amphiphile start to align; only 

thermal movement is possible (lc). Once the hydrophobic chains of the molecules are 

straighten up completely a “solid-like” (sc) interfacial film is formed. If the interfacial film is 

compressed even further, the monolayer collapses irreversibly and multilayers are 

formed.[86, 87]  

Usually, monolayer transfer to solid substrates takes place in the solid-condensed 

compression state of the interfacial film. There are different possibilities for the monolayer 

transfer onto solid substrates as it is shown in Figure 9. 
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Figure 9 Different deposition methods for amphiphilic molecules self-assembled at the air-
water interface of a Langmuir trough, A) Langmuir-Blodgett X-type deposition, B) Y-type 
deposition, C) Z-type deposition perpendicular to the air-water interface, D) Langmuir-
Schaefer transfer parallel to the air-water interface and E) surface lowering transfer. 

 

Different types of monolayer deposition were established using a Langmuir-Blodgett trough 

with or without a dipper. Hydrophobic substrates are typically transferred with the X-type 

deposition method. Here, the substrate is lowered into the subphase perpendicular to the 

air-water interface and covered with a single layer of molecules (Figure 9A). The Y-type 

deposition method is used for hydrophobic as well as for hydrophilic substrates. Generally, 

double layers of molecules are created because the substrate is covered during dipping into 

the subphase as well as during removal of the substrate as can be seen in Figure 9B. If the 

substrate is already immersed in the water subphase before compression of the interfacial 

film the transfer method is called the Z-type transfer resulting also a single layer of the film 

deposited on the substrate (Figure 9C).[85, 88] Moreover, the Langmuir-Schaefer transfer can 

be used for hydrophobic substrates (Figure 9D). Here, the substrate is lowered parallel to the 

interface and lifted after contact with the interfacial film.[89, 90] When working with a 

Langmuir trough without additional dipping equipment the monolayer can be transferred to 

a substrate by surface lowering transfer. Here, the interfacial film is lowered onto the solid 

substrate by careful pumping the subphase behind the barriers (Figure 9E).  

This technique is not exclusively suitable for molecular self-assembly at the air-water 

interface. Also nanoparticles of different materials and shapes can easily be self-assembled 
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at the air-water interface using the Langmuir trough application. Well-ordered hexagonal 

arrangements of colloids or other structures can be created and transferred by different 

deposition methods to substrates of different material and surface texture. 

 

5.2. Scanning Electron Microscopy 

There are several microscopy techniques to investigate the surface topography of samples 

such as the common light microscopy, atomic force microscopy and electron microscopy. 

Modern light microscopes are working with light in the visible wavelength range of the 

electromagnetic spectrum between 400 and 700 nm. The resolution of light microscopy is 

defined by Abbe´s resolution limit dedicated by the minimal distance (d) between two points 

depending on the numerical aperture (NA) and the wavelength (λ) of the incident light  

(eq. 16): 

NA2
d


   (eq. 16) 

Therefore, the maximum magnification is limited to about 1000x. Electron and scanning 

probe microscopy are reliable methods used when common light microscopy is 

inappropriate to image nanometer sized objects.  

In scanning electron microscopy[91] cathode accelerated electrons are focused by magnetic 

coils and the resulting electron beam is scanned across the sample´s surface. The electrons 

interact with the atoms in the sample (Figure 10) producing several detectable signals which 

carry information about composition and the surface topography.  

Upon interaction with the electrons from the focused primary electron beam secondary 

electrons (SE) can be ejected from the sample as they are low energy electrons. Theses 

electrons are typically used for surface imaging as they can leave the sample only at very 

short distances from their place of generation and guarantee high lateral and depth 

resolution. Moreover, high-energy back-scattered electrons (BE) can appear upon elastic 

scattering with electrons in the atomic shell. 
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Figure 10 Schematic illustrations of electrons from a focused electron beam of a scanning 
electron microscope (A) interacting with atoms on the sample surface and (B) the 
penetration depth (R). 

 

As this method is very sensitive to the atomic number material contrasts can be generated 

and visualized. Elements with high atomic number produce more back-scattered electrons 

and appear brighter than materials with low atomic number. If an electron from an inner 

shell of the atom is removed by the beam electrons and the place refilled by an electron 

from lower energy orbitals, radiation is emitted known as x-rays. This effect is used in energy 

dispersive x-ray spectroscopy (EDX) for investigations of the crystallographic structure of the 

material. When the emitted x-ray energy is absorbed by electrons located in outer orbitals 

which are than ejected, these electrons are called Auger electrons (AE). 

 

5.3. Atomic Force Microscopy 

Atomic force microscopy (AFM)[19, 92] is a type of high-resolution scanning probe microscopy 

which uses a physical probe, to scan the sample surface. With the so called cantilever 

consisting of a flat spring and a sharp tip the surface topography of a sample can be imaged 

following the basic principle shown in Figure 11. A laser beam is focused on the cantilever tip 

which is reflected to a photodiode detector. The sample is placed on a piezo controlled table 

and moved line-wise in x- and y-direction underneath the AFM tip. Due to the surface 

topography of the sample the cantilever is deflected in the z-direction resulting in a shifted, 
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reflected laser beam on the photodiode detector that is converted into an electrical signal. 

Using different operation modes, various material types ranging from hard to soft or sticky 

can be investigated. In the contact mode or static mode, respectively the physical probe 

touches the specimen’s surface directly. Here, the cantilever can either be regulated to scan 

with constant force across the surface (constant force mode) or it is set to a constant height 

on the surface (constant height mode) during scanning. This method can only be used for 

hard materials as the permanent contact of the tip and the high surface pressures may lead 

to deformation or even damage of the sample. Moreover, there are also dynamic modes 

such as the non-contact mode and the intermittent mode which are more suitable for soft 

and sticky surfaces. The cantilever oscillates near its resonance frequency and touches the 

surface only shortly without permanent contacting the sample surface. The interaction with 

the interface varying on the properties of the material and upcoming van der Waals, 

electrostatic or dipole-dipole interactions decreases the vibrational frequency of the 

cantilever which results in a phase shift. With this technique not only height images of the 

surface topography can be gained but also information about mechanical and adhesive 

properties of the material. 

 

Figure 11 Schematic illustration of an atomic force microscope. A laser beam is focused on 
the cantilever and reflected to a four quadrant photodiode detector. The deflections of the 
cantilever, which are caused by the surface topography of the sample result in a deflection 
of the reflected laser beam on the photodiode detector. With the piezo scanner the sample 
can be moved laterally and vertically. 
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6. Results and Discussion 

The results and discussion chapter is divided into four sub-chapters. The first part (chapter 

6.1) investigates colloids and their self-assembled structures concerning their interfacial 

equilibrium position directly at the air-water interface. A novel gas phase induced interfacial 

polymerization technique is presented to determine contact angles of individual colloids of 

different size and composition at aqueous interfaces.  

Afterwards, the amphiphile-driven self-assembly of nanoparticles into complex two-

dimensional architectures such as chain-like and pseudo square arrangements at the air-

water interface of a Langmuir trough is demonstrated (chapter 6.2).  

These chapters are followed by the presentation of a model system for optical data storage 

applications based on a functional binary colloidal monolayer with photo-responsive 

spatially separated nano-pixels (chapter 6.3). 

The last part (chapter 6.4) is based on another fundamental question of how nanoparticles 

interact with their environment. Here, it is described how stimuli responsive pH-sensitive 

nanoparticles were functionalized with a pH sensitive dye are used to record the pathway 

through a cell and the variance of the pH upon different transport processes of the particles 

inside the cell (chapter 6.4). 

 

6.1. Direct Visualization of the Interfacial Position of Colloidal 

Particles and their Assemblies 

This section is partly based on the publication “Direct Visualization of the interfacial position 

of colloidal particles and their assemblies” by N. Vogel, J. Ally, K. Bley, M. Kappl, K. 

Landfester and C. K. Weiss published 2014 in Nanoscale, volume 6 on pages 6879 – 6885 

(Ref. c4nr00401a). The publication is reprinted by permission from The Royal Society of 

Chemistry.[93] 

First, the vapor phase induced interfacial polymerization technique is introduced which 

allows direct visualization of nanoparticles in their equilibrium position at the air-water 

interface using AFM and SEM techniques. Kinetic studies were done to investigate the film 
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formation process and to validate that the interfacial positions of the colloids at the 

interface remain unaffected during the polymerization. The entrapment of different 

nanoparticles such as soft core-shell or polymeric particles in hexagonal arrangements and 

the measurement of the contact angles with colloidal probe atomic force microscopy were 

done by N. Vogel and J. Ally. 

To investigate and understand colloidal self-assembly at the air-water interface is of major 

importance even in the description of a variety of everyday problems such as food industries 

and cosmetics or stain-resistant surfaces[94]. Science and technology are reliant on the 

understanding of how colloids interact at interfaces e.g. in drug delivery[95], emulsion 

stability[96], particles assisted wetting[97, 98] and colloidal self-assembly at air-water 

interfaces.[99, 100] The self-organization of colloids at the air-water interface into highly 

ordered two-dimensional crystals has been recognized as an important and convenient 

technology to fabricate functional surface patterns at the nanoscale applicable in diverse 

research fields and technologies such as photonics[101-103] , data storage[103-106], control of 

liquid wetting and repellency[107-109], antireflective coatings[108, 110], plasmonic sensing[111-113], 

or light management in solar cells.[114, 115] Cooperative properties can be induced in single-

particle layers by using the advantage of binary colloidal crystals to study the effects of 

nanoscale confinement[116, 117], to explore complex assembly structures using structured 

particles[118], or to investigate the behavior of individual colloids at interfaces for a better 

understanding of fundamental self-ordering processes.[119]  

Optical microscopy methods are a powerful tool to directly visualize self-organization 

processes on a single particle level taking place at interfaces[119, 120] but it is inherently 

limited to particles with sizes in the micrometer range and thus not suitable for processes 

exploiting nanoscale colloids. Another approach uses the electron microscopy imaging 

technique of particles trapped at the air-water interface after either solidifying the media for 

instance by gel trapping technique upon addition of polysaccharides[121] or jet-freezing an 

oil/water/particle system and a subsequent freeze-fracture and metal shadowing 

process.[122, 123] Additionally, an experimentally simple, easy to implement, and robust 

method for the direct visualization of colloids at the air-water interface independent of the 

size or the material of the colloids is introduced. 
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This technique for entrapping nanoparticles at their interfacial position at the air-water 

interface is inspired by the gel trapping technique, established by Paunov[121, 124, 125] and the 

fingerprinting method with cyanoacrylate fuming.[126] Nanoparticles floating at the water/air 

interface can be easily entrapped by interfacial polymerization of butyl cyanoacrylate (BCA), 

also known as Super Glue®, which can be introduced via gas phase (Figure 12). This ensures 

that the interface is not mechanically perturbed. The polymerization is initiated by 

nucleophiles[127-129] (Figure 12E) and proceeds in the presence of water, thus the monomer 

has to diffuse through the growing polymer membrane. The presence of functional groups 

on the particle surface such as amino or hydroxyl groups leads to the formation of a thin 

poly(butyl cyanoacrylate) (PBCA) film as the functional groups also serve as polymerization 

initiating nucleophiles. In the presence of acids or Lewis acids the polymerization is 

inhibited.[128-130] Therefore, the film thickness of the PBCA-colloid hybrid film can be not only 

controlled by the amount of BCA supplied via the gas phase but also by the pH regulation of 

the subphase as the addition of base or other nucleophiles accelerates the BCA 

polymerization, whereas the addition of acid has a retarding effect. The polymerization 

process can be described as follows. When the butyl cyanoacrylate is evaporated and is in 

contact with water, the anionic polymerization is initiated for instance by OH- ions of the 

water. Therefore, the polymerization at the interstices of the colloid monolayer at the air-

water interface and also the nucleophiles on the particle surface initiate BCA polymerization 

(Figure 12B and C). Thus, a thin layer is formed covering the water surface and the cap of the 

particles reaching out of the air-water interface (Figure 12D). From intermittent-contact 

atomic force microscopy (AFM) both, height images and phase images can be obtained 

providing an idea of how much of the particles sticks out of the PBCA layer at the air-water 

level and therefore, also the contact angle can be determined. 
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Figure 12 Scheme for the interfacial colloidal entrapping process with gas phase supplied 
BCA polymerization. (A) Butyl cyanoacrylate is placed in an aluminum dish on a hot-plate. In 
a crystallization dish the colloids are spread at the air-water interface and both vessels are 
placed in a closed container. The monomer (BCA) evaporates and polymerizes at the colloid 
containing air-water interface. (B) The polymerization of BCA is initiated by nucleophiles in 
the water subphase; a polymer film starts to grow. (C-D) More monomer diffuses through 
the already formed thin polymeric membrane and polymerization continues until the 
particles if functional nucleophilic groups are present are fully covered. (E) Reaction scheme 
of the anionic polymerization of butyl cyanoacrylate initiated by nucleophiles such as OH- of 
the water molecules. 

More detailed information about the topography and the surface properties of the film are 

provided by the phase images. The response time of the oscillating cantilever in interaction 

with the film surface gives for instance information about the adhesion, friction and 

elasticity of the film. The response of the cantilevers oscillation while imaging in tapping 

mode is called “phase”. Figure 13A-B show the height and phase images of a monolayer of 

plain carboxylated polystyrene spheres (D = 1063 nm) self-assembled at the air-water 

interface at pH 7.0 and deposited on a Si-wafer. Figure 13C-D present the height and phase 

images of the colloids embedded in a PBCA layer deposited on Si-wafer after interfacial 

polymerization with BCA. Compared to the plain monolayer one can clearly see the stiff 

PBCA layer covering the particles, as the surface of the caps sticking out of the PBCA plane is 

even rougher and larger agglomerates of PBCA were generated on the surface. The PBCA 

layer can be clearly seen in the area in between the particles.  
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Figure 13 AFM images of polystyrene particles (1063 nm) deposited on silicon wafer after 
compression of self-assembled monolayers at the water interface of a Langmuir trough. 
Height image (A) and phase image (B) of colloids not embedded in PBCA. Hybrid film of 
colloids after interfacial polymerization of BCA (C) shows the height image and (D) the phase 
image of the hybrid film. 

The gradual growth of the PBCA layer can be easily visualized using side view scanning 

electron micrographs as the polymerization can only proceed in the presence of water, the 

BCA molecules need to pass the already formed polymeric membrane. This is the reason 

why the PBCA film only grows into the direction of the subphase (Figure 14A-F). Depending 

on the amount of BCA added via the gas phase the film thickness can be regulated resulting 

in partly embedded colloids (Figure 14A-D) or in a hybrid film mostly consisting of PBCA 

(Figure 14E-F). From the side view scanning electron micrographs it is obvious that the film 

thickness has no or just minor effects on the contact angle or the particles self-assembled 

architectures. 

The membrane, which is formed, features a smooth interface on the side facing the air 

phase while being coarser at the growth front directed into the water phase, reflecting 

individual nucleation and growth sites occurring during the polymerization.  
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Figure 14 Side view scanning electron microscopy images of polystyrene spheres 
(D = 1063 nm) in a monolayer embedded in PBCA. The process of PBCA film formation is 
visualized by SEM from transferred hybrid films after given time intervals of permanent 
monomer addition via the gas phase. The micrographs show the embedded colloidal 
monolayers after A) 0.5 h, B) 1 h, C) 1.5 h, D) 2 h, E) 24 h and F) after 48 h of monomer 
exposure. Long exposure times show that the film growth is exclusively into the subphase 
direction and the colloids’ positions at the interface as well as the shape and morphology of 
the polymer surface remain unaltered by the continuing polymerization reaction.  

The hybrid colloid-PBCA films can be easily transferred to a solid substrate and investigated 

by electron microscopy. Advantageously, this method proceeds without mechanical 

perturbation of the interface and the necessity of additives present in the subphase which 

may have an influence on the contact angle of the colloids. Moreover, it provides a 

possibility to easily visualize self-assembly of colloids at the interface in a current “frozen” 

state, whereupon mechanical disturbances or drying effects on the self-assembled 

structures of the colloids during the transfer can be suppressed.  



 

35 
 

6.1.1. The Contact Angle of Nanoparticles in Hexagonal 

Closed-Packed Arrangements 

The process of entrapping colloidal particles at their interfacial position by polymerization of 

butyl cyanoacrylate is suitable for various materials independently on the particle size as can 

be seen in Figure 15. Here, hexagonal arrangements of nanoparticles consisting of 

polystyrene (Figure 15A, 1063 nm), poly(methyl methacrylate) (Figure 15B, 350 nm), silica 

(Figure 15C, 590 nm) or even very soft and deformable core-shell particles with a gold core 

and a poly(N-isopropylacrylamide) hydrogel shell (Au@PNiPAAm, Figure 15D, 300 nm) were 

fixed at their interfacial position with this method. 

 

Figure 15 Scanning electron micrographs, side view on colloidal particles of different sizes 
and materials embedded at their interfacial position with PBCA, (A) polystyrene (1063 nm), 
(B) poly(methyl methacrylate) (350 nm), (C) silica (590 nm) and Au@PNiPAAm (300 nm). The 
figure was taken from Vogel et al. [93] with permission from the Royal Society of Chemistry. 

 

All particles used for entrapment were self-assembled at the air-water interface in a 

crystallization dish following the procedure described in the experimental details (chapter 7). 

The particles arrange themselves in a hexagonally closed packed lattice forming 2D-

crystalline and very stable structures. The large polystyrene particles (Figure 15A) were self-

assembled at pH = 6 and completely embedded in a thick PBCA film. The poly(methyl 
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methacrylate) (PMMA) colloids where fixed with a very thin film of about 20 nm of PBCA 

(Figure 15B). The silica particles (Figure 15C) show a very small water contact angle which is 

caused by the high hydrophilicity of the particles due to the presence of a high amount of 

hydroxyl groups on the particles surface. Further, the silica particles did not form a densely 

packed hexagonal structure, but voids and packing defects are visible in the monolayer. This 

indicates that by introduction of the BCA monomer to the interface and the interfacial 

polymerization the colloids are not forced to form a hexagonal close-packed arrangement 

and induce colloid crystallization. It rather allows the visualization of the current situation or 

process with no or minor disturbances. Such a “frozen” state as snap-shot is getting more 

important for the creation of more complex hierarchical colloid arrangements, which are 

thermodynamically not favored such as square and chain-like arrangements, which is 

described in chapter 6.2. It provides a more accurate picture of colloidal self-assembly 

processes as systematic errors arising from transfer and drying can be excluded. 

The contact angle of the colloids can be determined from scanning electron micrographs by 

two techniques. First, appropriate tangents can be fitted in the side view images and the 

angle is extracted from the image. But the evaluation of a statistically relevant number of 

nanoparticles is exhausting as only few particles are located on the edge of the film. The 

second method provides more proper statistical evaluation by investigating top-view images 

of the PBCA-colloid hybrid films. The contact angle can be analyzed with the software ImageJ 

and the aid of a geometric model (Figure 16).  

After measuring the diameter of the nanoparticles cap protruding from the polymeric film 

equation 17 can be used to calculate the contact angle. 








 


r

dr
arccos PBCAtop90Θ   (eq. 17) 

The colloids are covered with a thin PBCA layer which needs to be considered in the 

geometric model. From side view images the thickness of this layer was estimated to be 

approximately dPBCA = 200 nm. The diameter obtained from the top view images was 

corrected by this value (dPBCA). 
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Figure 16 Sketch of a colloid at the air-water interface and the derivation of the equation to 
assess the contact angle from top-view diameters. rc: radius of the colloid caps (rtop) 
corrected by the thickness of the PBCA layer (dPBCA = 200 nm). The image is reprinted with 
permission from the Royal Society of Chemistry.[93] 

To assess the capabilities of the proposed method and to extract quantitative information, 

the contact angle of carboxylic acid functionalized PS particles was determined at different 

pH values and compared to results obtained by colloidal probe atomic force microscopy 

realized by J. Ally as alternative method. For this method a single colloidal particle is glued to 

the end of a tipless AFM cantilever and particle interactions with a surface or interface can 

be studied in detail.[131, 132] From force measurements the contact angle can be determined 

as the particle is brought into contact with a fluid-liquid interface.[133] This method is limited 

to colloids of sizes larger than 3 µm. For the assembly of colloidal probes the particles must 

be manipulated under an optical microscope which is not possible using smaller particles. 

The interfacial visualization with PBCA hybrid films is not limited to micron sized particles but 

could equally be used to investigate and quantify contact angles of smaller, nano-scaled 

colloids. For this reason commercially available, carboxylated PS colloids with a nominal 

diameter of 5 µm were chosen for comparative evaluation using the colloidal probe AFM 

technique. The results of the air-water-colloid contact angle by both the established colloidal 

probe AFM and the interfacial polymerization visualization method are summarized in Table 

1. 

The 5 µm PS colloids used for the experiments have a carboxylated surface, thus the surface 

charge and hydrophilicity can be adjusted by the pH of the subphase. At low pH, the 

particles are relatively hydrophobic as the surface charge is reduced by protonation of the 

carboxylic acid functions.[56] In contrast, at high pH values the carboxylic acid is 
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deprotonated which leads to a higher amount of surface charges and increased 

hydrophilicity of the colloids. The submersion depth of the colloids is directly related to the 

charge on the particle surface and therefore also to the hydrophobicity. A lower 

hydrophilicity leads to decreased contact angles and higher hydrophobicity to increased 

contact angles of the particles at the air-water interface vice versa. Poly(acrylic acid), serving 

as reference for the surface bound carboxylic acid groups, has pKa = 4 - 4.5[134], so the 

transition from fully protonated acid function to deprotonated acid should appear between 

pH = 4 and pH = 5. Thus the colloids were investigated at pH = 4, pH = 6 and pH = 9. In basic 

conditions the contact angle should be significantly lower, as the majority of the acidic 

groups are deprotonated and therefore, the hydrophobicity should be decreased.  

Table 1 Contact angles obtained from atomic force microscopy (AFM) measurements and 
the visual evaluation of scanning electron micrographs of interfacial trapped colloids. 

  Contact angle Θ / ° 

pH Charge density AFM: advancing AFM: receding Visual: side Visual: top 

4 1.4 23.1, 45.9, 44.6 19.6 35 40 ± 7 

6 2.1 17.7, 40.4, 40.6 14.2 30 26 ± 4 

9 2.9 13.5, 38.9, 40.5 10.9 20 23 ± 5 

 

As the results show, there are large variations in the contact angles obtained by the 

individual colloidal force measurements. One set of measurements gave quite low values 

(13.5 to 23.1°) with a difference of ca. 10° between pH 4 and pH 9, whereas the other 

measurements result a contact angle of approximately 40° with only small differences 

among pH values, Determining contact angles via embedding the particles in a solid polymer 

film and subsequent SEM image analysis yields more statistically relevant data since a large 

number of colloids can be assessed with ease. A significant distribution of the values of the 

contact angles corroborating the large scatter in colloidal force data. The values of the 

contact angles range from 28 to 48° at pH 4, from 18 to 32° at pH 6 and from 13 to 26° at 

pH 9. In comparison to the standard deviation of the colloids used within the experiment 

(D = 4890 ± 97 nm), the distribution cannot only be explained by the variation of the 

particles diameter. The results support the recent findings of Isa et al.[122], who reported a 
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distinct distribution of contact angles of colloids trapped at an oil-water interface. This single 

particle approach showed that colloids do not only feature a size distribution but also differ 

significantly in their surface properties. The origin of these inhomogeneous surface 

properties is not yet completely understood. It has been proposed that possibly a surficial or 

topographic inhomogeneity can arise from synthetic process or particle treatment such as 

washing, centrifugation or the addition of spreading solvent.[135, 136] Moreover, fluctuation of 

contact position can be founded on Brownian motion, which is potentially resolved when 

visualizing individual particles.[122] 

 

6.1.2. Conclusion and Outlook for Section 6.1 

To summarize, an experimentally simple, fast and versatile technique was presented to trap 

colloids of a wide size range and arbitrary composition at the air-water interface by 

embedding them in a poly(butyl cyanoacrylate) film. Interface and position of the colloids 

remain unaffected as the monomer is introduced via the gas phase and polymerizes upon 

contact with the aqueous subphase. Thus, the method enables visualizing colloids of a 

variety of materials and sizes, including polymer and inorganic materials as well as very soft 

materials at their equilibrium position directly at the air-water interface. Quantitatively, this 

technique can be used to determine contact angels of individual particles at liquid interfaces 

revealing a contact angle distribution what has also been shown by Isa et al.[122] for particles 

at liquid-oil interfaces. Furthermore, this technique allows entrapping non-equilibrium 

particle arrangements directly at the interface and can be used to take a snap-shot of 

particle arrangements at any stage of the self-assembly process. 
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6.2. Architecture control in Two-Dimensional Colloidal Self-

Assembly at the Air-Water Interface  

In the previous chapter the interfacial equilibrium position of colloids at the air-water 

interface was investigated using the gas phase induced polymerization technique. This 

technique enables to visualize nanoparticles and self-assembled colloidal monolayers 

directly at the air-water interface. Typically, the interfacial self-assembly of colloids results 

hexagonal close-packed colloidal monolayers which is the thermodynamically favored 

structure. In this chapter the amphiphile-driven self-assembly of nanoparticles into network 

and pseudo square structures is introduced. The amphiphiles force the colloids to assemble 

into non-equilibrium arrangements. The influence of amphiphile concentration, electrostatic 

shielding by pH variation and salt addition are investigated in detail. 

Creating hexagonal densely packed colloidal monolayers of high quality is well investigated 

and well established. Several methods can be used to achieve large two-dimensional 

colloidal crystals. But the controlled preparation of more complex structures such as square 

or chain-like architectures was so far not possible by only using the colloidal self-assembly 

without any additional equipment or templates. Such unconventional colloidal architectures, 

often called anisotropic[137] or meso-structures[138], were rather produced randomly than 

really in a controllable and defined way. Simulations and experiments have predicted that 

polymer grafted nanoparticles can easily form such anisotropic structures in bulk in the 

presence of a polymer matrix[137] or in thin films.[139] But the controllable two-dimensional 

self-assembly at the air-water interface is so far not accessible. Ghezzi et al. [138, 140] 

discovered that sulfate functionalized polystyrene particles spontaneously form complex 

ring structures, loops or lattice-like architectures at the air-water interface. Chen et al.[141] 

and Fernández-Toledano et al.[142] observed similar loosely bound ordered aggregates, 

chains and loops of similar particles at the air-water interface. Both groups propose the 

existence of a second minimum in the interaction potential between approaching colloids, 

whereupon the particles are energetically trapped. Stamou et al.[27] propose prevailing long-

ranged attractive capillary forces driving the particles to come closer together due to the 

presence of an irregular meniscus of non-uniformly wetted colloids at the air-water 

interface. However, Fernández-Toledo et al. [142] discovered that the formation of meso-

structures is caused due to the contamination of colloidal monolayers by silicone oil. 
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Poly(dimethylsiloxane) oils are often used as coatings for needles and syringes used to 

spread the particle dispersion at the air−water interface. As this simple example shows, 

contaminations in colloidal dispersion can have an immense effect on the colloidal 

monolayer formation. Therefore, proper preparation of the colloid dispersion is of major 

importance if well-ordered hexagonal densely-packed colloidal monolayers shall be formed. 

Besides working with clean contaminant-free equipment, the cleaning of the nanoparticle 

dispersion is also very important. The procedure typically includes several steps such as 

dialyzing, washing and centrifugation-redispersion cycles to remove additives, stabilizers or 

monomer residues in the dispersion that can hinder the colloids at the air-water interface to 

crystallize in well-defined hexagonal arrangements. In the present system, the only 

“additives” or interfering molecules in the colloid dispersion are undefined low molecular 

weight copolymers, which are produced in situ during the emulsion copolymerization of 

styrene with acrylic acid.[21, 143, 144] In the first step of a radical polymerization process in 

emulsion, the initiator (a peroxodisulfate) is thermally cleaved forming radicals. A radical 

reacts with acrylic acid and to a lower extent with styrene molecules present in low 

concentration in the aqueous dispersive medium. The polymerization of such water soluble 

oligo-radicals proceeds until a distinct molecular weight is achieved, typically 5-7 monomer 

units for polystyrene.[145] These amphiphilic oligo-radicals start to precipitate and form small 

agglomerates or micelles serving as nucleation sites for polymerization, respectively. 

Further, styrene molecules diffuse into the micelles and continue the polymerization until 

the monomer is completely consumed.  

Hexagonal densely-packed crystals of as prepared colloidal particles can be generated at the 

air-water interface of the Langmuir trough but the presence of the amphiphilic copolymers 

influences the interaction of colloidal particles and hinders the perfect particle arrangement. 

Even when the colloidal dispersion has been dialyzed and washed extensively, equilibrium is 

established due to a concentration gradient of adsorbed low molecular weight species on 

the colloid surface and free molecules in the continuous aqueous phase. 

Figure 17 shows the surface pressure (Π) vs. area (A) isotherms of colloidal dispersions 

spread and compressed at the air-water interface of a Langmuir trough after given 

equilibration times. Here, a particle dispersion (D = 1150 nm, c = 5 mg∙mL) was left for 

equilibration in MilliQ water after dialyzing and several washing steps and was spread at the 
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air-water interface after given time intervals (1 h, 24 h equilibration time in MilliQ water). 

The surface pressure–area isotherm for a clean colloid dispersion spread at the air-water 

interface instantaneously after cleaning (compact line) shows the typical steep curve. 

Already after an equilibration time of 1 h, the shape of the isotherm has changed. This can 

easily be seen from the shallow part of the isotherm (dashed line) between Π = 3.3 mN∙m-1 

and Π = 11.7 mN∙m-1 (ΔΠ = 8.4 mN∙m-1) and an area of 1520 mm². 

 

Figure 17 Surface pressure–area isotherms of 1150 nm carboxylated polystyrene colloids. 
Colloids spread instantaneously after several washing steps (black compact line), after 1 h of 
equilibration in MilliQ water (black long dashed line) and after 24 h of equilibration in water 
(black short dashed line) at pH = 7. 

 

During 1 h the above mentioned low molecular weight amphiphilic copolymers desorb from 

the particle surface due to the depletion of stabilizing molecules in the surrounding medium 

after washing. After 24 h of equilibration (dotted line) the shallow part of the isotherm is 

even larger ΔΠ = 10.1 mN∙m-1 and 1890 mm² in size. This equates to 52.9% of the interfacial 

area after 1 h and 53.4% after 24 h of equilibration. The isotherm recorded after 24 h of 

equilibration time indicates the presence of a more flexible film rather than the typical stiff 

colloid film. From scanning electron microscopy imaging non-hexagonal arrangements can 

be seen very often if the isotherm for the compression of such a flexible interfacial film looks 

similar as shown in Figure 17. Mainly additional interactions of desorbed molecules and 

colloids are responsible for the formation of anisotropic non-hexagonal structures. But these 

structures are produced more “accidentally” and in a rather uncontrollable way.  
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Here, the interactions of colloids and distinct, well-defined copolymers or amphiphilic 

molecules in general might be used to create such structures from colloidal particles without 

using templates or other time or cost consuming methods. Without any additional 

equipment or functionalization of the particles as mentioned earlier more complex colloidal 

structures can be prepared by a self-assembly process in a reproducible and controlled way. 

 

6.2.1.1. Amphiphilic Copolymers and their Effect on 

Colloidal Self-Assembly 

Amphiphilic molecules in general are molecules with both hydrophobic and hydrophilic 

properties. The most common representatives of amphiphiles are surfactants, which tend to 

segregate at the air-water interface and alter surface properties. They consist of a 

hydrophobic part that mostly contains long hydrocarbon chains and a polar hydrophilic part. 

There are several surfactants with ionic groups such as the negatively charged sodium 

dodecylsulfate (SDS) or the positively charged cetyltrimethyl ammonium bromide (CTAB) 

and also non-ionic surfactants such as poly(ethylene oxide) alkyl ether (Lutensol) or 

polyglycerol polyricinoleate (PGPR).  

Using additives such as surfactants influences the properties of the air-water interface and 

consequently the self-assembly process of colloids by additional steric and electrostatic 

interactions. As the self-assembly process proceeds at the air-water interface and not in 

bulk, the detailed analysis of all influencing factors is very challenging. In bulk typically the 

DLVO theory (chapter 4.1.3) gives an explicit representation of the interplay of van-der-

Waals attraction and electrostatic repulsion. Working at the air-water interface on a 

Langmuir trough causes a far more complex situation, as additional forces such as attractive 

capillary forces and dipole-dipole interactions appear. Mechanical compression of the 

colloids and amphiphiles at the interface interferes with the equilibrium situation and forces 

the components to new (non) equilibrium positions.  

Amphiphiles and colloids are both located at the air-water interface. If particles and 

amphiphiles are both similarly charged the electrostatic repulsion during the compression 

can be theoretically increased depending on the amount of amphiphiles added as well as the 
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charge density of the molecules. Hydrophobic attractive interactions can also be increased 

as well as steric repulsive interactions. Figure 18A shows a scheme for the concept of how 

particle block-copolymer mixtures can assemble on the surface of a Langmuir trough and the 

resulting architectures, which were obtained throughout the experiments varying from 

square (Figure 18B) to chain-like particle assemblies (Figure 18C). Here, depending on the 

copolymer composition and the concentration of the amphiphile present at the interface, 

different structures are accessible after compression of the interfacial film. 

 

Figure 18 A) Scheme for the preparation of colloid-copolymer hybrid monolayers at the air-
water interface of a Langmuir trough starting with spreading, followed by compression and 
surface lowering transfer (from top to bottom). B and C represent the resulting particle 
structures such as square (B) and chain-like arrangements (C) that were created by co-self-
assembly of colloids and block-copolymers.  

 

As mentioned before, there are different types of surfactants, which can be used to control 

the particle self-assembly at the air-water interface. Reynaert et al. [135, 146] have 

demonstrated at a decane-water interface of a Langmuir trough that the addition of sodium 

dodecyl sulfate into the water subphase drives 3 µm sulfate functionalized particles into 

chain-like aggregates. Different results can be obtained at the air-water interface as Vogel et 

al.[40] have discovered for instance. The presence of negatively charged SDS molecules 

supports the two-dimensional crystallization process of negatively charged carboxyl 

functionalized polystyrene particles at the air-water interface creating well-ordered 
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hexagonal densely-packed monolayers. Figure 19 illustrates the difference in the surface-

pressure isothermes for colloids (D = 1150 nm carboxylated PS colloids) spread at the air-

water interface and colloids spread onto SDS solution (cSDS = 0.1 mmol∙L-1) using the 

Langmuir technique to create closed packed colloidal monolayers. As can be concluded from 

Figure 19A the surface pressure-area isotherm of the monolayer is much steeper in the 

presence of SDS (grey compact line), whereas the isotherm from pure MilliQ water (black 

compact line) shows a more shallow increase in surface pressure during compression 

indicating the presence of a more flexible film at the air-water interface. The corresponding 

SEM images of the deposited colloidal monolayers on silica wafers (Figure 19B and C) show 

as well the difference in packing quality of the colloidal monolayers. The structural unity of 

the colloids and the two-dimensional hexagonal densely-packed crystal domain size is 

increased in the presence of SDS. 

 

Figure 19 A) Surface pressure – area isotherms of carboxylated polystyrene colloids 
(1150 nm, c = 5 mg∙mL-1) with (grey compact line) and without (black compact line) the 
addition of 0.1 mmol∙L-1 SDS in the subphase and B,C) the corresponding SEM images of the 
resulting monolayers after deposition. 

 

Obviously, low molecular weight (M) molecules, especially amphiphiles such as SDS 

(M = 288.4 g∙mol-1) interact with the colloidal particles and influence their structure 

formation at the interface. They alter the surface tension and affect the electrostatic and 

steric interactions. However, the formation of more complex architectures such as square 

crystals or particle chain-like networks cannot be obtained in the presence of such low 
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molecular weight amphiphiles, at least not in the system used here. Contrary to the results 

of Reynaert et al. at an oil-water interface using negatively charged sulfate functionalized 

polystyrene particles[135, 146], the addition of SDS does not lead to chain-like aggregates of 

negatively charged carboxylated polystyrene colloids at the air-water interface. For this 

reason, other surface active agents with higher molecular weight were tested for their 

activity at the interface and their interaction with colloids at the air-water interface. As an 

example for additional mainly steric repulsion between the particles the triblock-copolymer 

Pluronic P103 was chosen. Further, poly(acrylic acid)-poly(methyl methacrylate) diblock-

copolymers were used to manipulate also the electrostatic interactions additional to the 

steric interactions between the colloids at the air-water interface. First, the interfacial 

activity of the molecules was investigated using the Langmuir technique. Figure 20A shows 

the structures of the amphiphilic molecules chosen for architecture control.  

 

Figure 20 A) Molecular structure of the triblock-copolymer Pluronic P103 and the diblock-
copolymer consisting of poly(acrylic acid) and poly(methyl methacrylate). The hydrophilic 
part is highlighted in orange color and the hydrophobic part in black. B) Shows the surface 
pressure – area isotherms of the different molecules (Pluronic P103 grey, PAA17-b-PMMA9 
compact black, PAA14-b-PMMA16 black dashed, PAA22-b-PMMA30 black dotted line) at the air-
water interface at pH = 7.  

 

The commercial non-ionic triblock-copolymer Pluronic P103 consisting of hydrophilic 

poly(ethylene oxide) (Figure 20A in orange) and poly(propylene oxide) blocks (Figure 20A in 

black) was used as it is well-known for its high surface activity[147-149] and as an example for 

predominating mechanical or steric interactions between the particles and the surfactant at 
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the air-water interface. Zhou et al.[150] discovered that the addition of triblock-copolymers 

consisting of poly(ethylene oxide) and poly(propylene oxide) blocks forces silica particles in 

bulk to from chains and networks depending on the concentration of the block-copolymer 

added. But also Wang et al. [151] have shown for titanium oxide nanoparticles an anisotropic 

self-assembly in aqueous phase by adding the triblock-copolymer Pluronic F127 (PEO100-b-

PPO65-b-PEO100), which is promising for the self-assembly at the interface. The surfactant 

was spread at the air-water interface of a Langmuir trough and surface pressure versus area 

isotherms were recorded during compression of the interface. As can be seen in Figure 20B 

(grey compact line) the Pluronic P103 monolayer shows a very shallow increase in surface 

pressure with decreasing available area. This interfacial behavior is typical for flexible 

molecules at the air-water interface such as stearic acid or oleic acid.[89, 152-154] In early 

compression states the molecules are completely free without contact to each other. This 

can be described as “gaseous-like” state. When the monolayer is compressed further the 

molecules start to interact with each other, which is represented by a small increase in 

surface pressure and the situation can be described as “liquid-like”. The hydrophobic chains 

start to reorient at the interface. The surface pressure-area isotherm of amphiphiles, such as 

fatty acid salts, shows a steep part of the isotherm at low area per molecule. This represents 

a completely covered interface and a stiff film with aligned molecules that cannot be 

compressed further. This part is not observed in the compression isotherm of Pluronic P103. 

Anionic block-copolymers consisting of a hydrophilic poly(acrylic acid) (Figure 20A in orange) 

and a hydrophobic poly(methyl methacrylate) block (Figure 20A in black) were used[155, 156] 

as they should not only show mechanical interactions but additional electrostatic forces 

between the colloids at the air-water interface. Here, different low molecular weight 

copolymers (ca. 1,200-5,000 g∙mol-1) with varying block lengths were chosen to influence 

colloidal self-assembly. The block-copolymers used have either an excess of the hydrophilic 

block (PAA17-b-PMMA9, 1,200 g∙mol-1), a similar length for both hydrophilic as well as 

hydrophobic blocks (PAA14-b-PMMa16, 3,000 g∙mol-1) and or an excess of the hydrophobic 

block (PAA22-b-PMMA30, 5,000 g∙mol-1). The concentration of the block-copolymer solutions 

spread as a 50 vol.% solution at the air-water interface (pH = 7) was c = 0.1 mg∙mL-1 for the 

Pluronic P103 and c = 2.5 mg∙mL-1for the PAAx-b-PMMAy copolymers. The isotherms for all 

the block-copolymers are characterized by a very shallow increase of the surface pressure 
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during compression (Figure 20). The Pluronic P103 surface pressure-area isotherm increases 

slightly with decreasing area and shows no steep part for a stiff film as it is widely known for 

amphiphiles. The isotherm of the block-copolymer PAA17-b-PMMA9 (Figure 20 black compact 

line) is characterized mainly by a very slight increase in surface pressure during compression, 

which is reasonable. The swollen hydrophilic PAA block points into the subphase as water is 

a better solvent than the air-phase. The PMMA block probably exists as a collapsed coil and 

stays as hydrophobic block of the copolymer at the air-water interface. But the biggest part 

of this copolymer is located inside the water subphase. When the interface is completely 

covered with a molecular monolayer the hydrophobic chains reaching out of the water 

surface reorient and straighten up upon further compression. Low molecular weight 

copolymers such as PAA17-b-PMMA9 have a too short hydrophobic chain with only 9 methyl 

methacrylate units to interfere with other surrounding alkyl chains which in general lead to 

an increased surface pressure.[152] The surface pressure isotherm of the block-copolymer 

PAA14-b-PMMa16 (Figure 20B, black dashed line) shows again the slight increase in surface 

pressure upon compression until the surface is completely covered. The sharp increase in 

surface pressure indicates the presence of a stiff film where the alkyl chains of the block-

copolymer reaching out of the subphase straighten up. Similar behavior is observed for the 

block-copolymer PAA22-b-PMMA30 (Figure 20B, black dotted line) which is characterized by a 

larger hydrophobic block length and higher molecular weight. The surface pressure - area 

isotherms presented in Figure 20 (black compact, striped and dotted lines) indicate that the 

block-copolymers PAAx-b-PMMAy act in a similar way as the non-ionic Pluronic P103 at the 

air-water interface except the steeper part of the isotherm at late compression states which 

can be identified as the region where the hydrophobic PMMA blocks noticeably interact 

sterically with each other. As can be seen from Figure 20B for the copolymers with a larger 

hydrophobic block such as PAA22-b-PMMA30 the steep region of the isotherm is more 

pronounced than for the PAA17-b-PMMA9.  

After characterizing the interfacial behavior of the copolymers the interaction of copolymer 

and colloids was analyzed in detail. Therefore, colloid-copolymer mixtures with different 

copolymer concentrations and 1150 nm carboxyl functionalized polystyrene spheres were 

spread at the air-water interface as a 67 vol.% ethanolic dispersion. Figure 21A-G present the 

Π-A isotherms of the 1150 nm colloid-Pluronic P103 mixture with different Pluronic P103 
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concentrations (Figure 21A) and the corresponding SEM images of the monolayers deposited 

on silica wafers at high surface pressures near the collapse points (Figure 21B-G). 

 

Figure 21 A) Surface pressure – area isotherms of 1150 nm carboxylated polystyrene colloids 
(c = 1.7 mg∙mL-1) mixed with different concentrations of Pluronic P103 and spread at the air-
water interface of a Langmuir trough at pH = 7. B-G) SEM images of the corresponding 
deposited monolayers near the collapse point. 

 

From surface pressure–area isotherms the characteristic points such as the transition from a 

flexible to a rigid film (Πstiff) and defined areas (ΔAtot, ΔAflex) can be easily analyzed as it is 

exemplified in Figure 22. Simplified, the isotherm can be divided into three parts. The 

important point of where the molecules and colloids start interacting (A), the transition of a 

flexible into rigid colloid-copolymer hybrid film (B) and the collapse point (C) can be easily 

analyzed by extrapolating the single parts of the isotherm with their different slopes (red 

lines).  
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Figure 22 Exemplary surface pressure – area isotherm for a mixture of 1150 nm polystyrene 
colloids and 0.1 wt.% PAA14-b-PMMA16 (black compact line) with tangents (red lines) at the 
different sections of the isotherm. At point A the components start to interact with each 
other. Further compression leads to surface pressure increase indicating colloid assembly 
and copolymer chain alignment. The value for the surface pressure at point B indicates the 
transition from a flexible to a stiff film (Πstiff) and point C represents the collapse point of the 
monolayer where multilayer formation begins.  

 

The intersections represent the above mentioned points. The total area (ΔAtot) is 

characterized by the area between zero and point A in the surface pressure – area isotherm. 

Here, the section of copolymer chain alignment and colloid orientation during compression 

(ΔAflex, area limited by A and B) as well as the rigid densely-packed part of the monolayers is 

included (area between A and C). The point B indicates the transition of the flexible film into 

a more rigid monolayer at the bend of the isotherm and therefore the moment of completed 

copolymer chain orientation (Πstiff). 

Table 2 summarizes the characteristic points of the surface pressure–area isotherms for the 

different mixtures of colloids with varying amounts of Pluronic P103. As can be seen in Table 

2, there is an increase of the surface pressure at the bend of the isotherm (Πstiff) with 

increasing amount of Pluronic P103 what can be expected as the Pluronic molecules also 

contribute to the total interfacial surface pressure. During compression the shallow part of 

the isotherm (ΔAflex) represents the regions where the chains and blocks of the triblock-

copolymer start to orient at the interface until, at the bend of the isotherm, a stiff colloid-

copolymer monolayer is formed. A rough trend of slight increase of the area and the surface 
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pressure (Πstiff) with larger amount of copolymer in the mixture can be seen. Scanning 

electron microscopy images taken after deposition (Figure 21B-C) confirm that the Pluronic 

P103 has just a minor influence on the particle self-assembly, which was predicted from the 

isotherms. The monolayer features a hexagonal, but not very well ordered, particle 

arrangement. At higher concentrations of block-copolymer additive (0.1 – 0.5 wt.%) phase 

separation starts to appear between the colloids and the copolymer (Figure 21D-F). The 

corresponding isotherms (Figure 21A, 0.1-0.5 wt.%) indicate that at early compression states 

the interfacial film behaves more copolymer-like. The more block-copolymer is present at 

the interface the lower the interfacial tension and the larger the initial surface pressure of 

the monolayer. At high concentrations of Pluronic P103 (>1.0 wt.%) the poly(ethylene 

oxide)-poly(propylene oxid) block-copolymer tend to crystallize visible in between the 

particle islands (Figure 21G). 

Table 2 Characteristic values obtained from the isotherm of a mixture of 1150 nm 
polystyrene colloids and different concentrations of the triblock-copolymer Pluronic P103. 

ccopolymer / wt.% ΔAtot / cm² ΔAflex / cm² ΔAflex / % Πstiff / mN∙m-1 

0.01 171.8 91.5 53.3 9.8 

0.02 174.3 66.4 38.1 5.6 

0.05 242.0 159.2 65.8 17.0 

0.1 242.0 162.1 67.0 19.8 

0.2 242.0 151.8 62.7 21.6 

0.5 242.0 200.7 82.9 27.3 

1.0 242.0 196.9 81.4 29.4 

 

The isotherms of the dispersion with minute copolymer addition (Figure 21A, 0.01 -

 0.05 wt.%) indicate minor influence of the additive on the assembly as the isotherm is of 

similar shape as the one of the pure colloids (Figure 19).  

From the previous results, it can be deduced that mere mechanical/steric interactions of 

colloids with non-ionic block-copolymer molecules such as Pluronic P103 do not force the 

colloids to create complex chain-like or square arrangements of particles at the air-water 

interface as it has been described for instance by Zhou et al. in bulk.[150] The influence of 
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electrostatic interactions should be also taken into account. Therefore, like charged diblock-

copolymers consisting of a hydrophilic poly(acrylic acid) block and a hydrophobic 

poly(methyl methacrylate) block were used to manipulate the electrostatic interactions 

beside the steric interactions. Due to the mechanical force during the compression of the 

interfacial monolayer, both, negatively charged copolymers as well as negative carboxylated 

colloids are pushed closer together, whereas the electrostatic repulsion of the like-charged 

components is increased drastically and additional dipole-dipole interactions can occur. Such 

short ranged dipole interactions can lead to particle alignment as theoretical considerations 

of Schmidle et al.[157] have shown.  

First, the interaction of PAA17-b-PMMA9 with 1150 nm colloids was studied using different 

concentrations of the copolymer. Figure 23A shows the surface-pressure-area isotherm of 

the hybrid film during compression and Figure 23B-F the corresponding scanning electron 

microscopy images. The characteristic details of the isotherm were analyzed and 

summarized in Table 3. 

Table 3 Characteristic data from the isotherms of a mixture of 1150 nm polystyrene colloids 
and different concentrations of the diblock-copolymer (ccopolymer) PAA17-b-PMMA9. 

ccopolymer / wt.% ΔAtot / cm² ΔAflex / cm² ΔAflex / % Πstiff / mN∙m-1 

0.01 147.6 78.0 52.8 20.9 

0.02 162.9 61.0 57.7 18.4 

0.05 150.2 94 40.6 24.3 

0.1 173.6 70.3 40.5 20.1 

0.2 203.7 156.8 77.0 27.9 

 

In early states of the isotherm at large areas the colloids and copolymer molecules behave as 

described as “gaseous-like”, which corresponds to the constant surface pressure. At smaller 

surface areas, at the point where the interface is completely covered with colloids and 

copolymer molecules, the surface pressure increases slightly as it is typical for simple 

amphiphiles, which are still flexible regarding their orientation of the hydrophobic chains. 
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Figure 23 A) Surface pressure – area isotherms of 1150 nm carboxylated polystyrene colloids 
(c = 1.7 mg∙mL-1) mixed with different concentrations of PAA17-b-PMMA9 at pH = 7 and B-F) 
SEM images of the corresponding monolayers deposited near the collapse point. 

When the compression proceeds there is an abrupt rise of the isotherm indicating the 

presence of a stiff interfacial film (Πstiff). Table 3 shows that with larger amount of copolymer 

in the colloid-copolymer mixture Πstiff slightly increases but still it follows just a rough trend. 

The interfacial area of the more “copolymer-like” behavior (ΔAflex) where the copolymer 

chains, especially the hydrophobic parts, begin to align at the interface is mainly > 50% of 

the entire area (ΔAtot). 

From scanning electron microscopy images (Figure 23B-E) it is obvious that the mechanical 

compression of the colloid-copolymer mixture with low molecular weight copolymer 

containing a larger amount of PAA than PMMA leads to agglomeration of the copolymer on 

the particle surface (see also Figure 24) and destroys the overall ordering. It can be 

concluded that this kind of copolymer is not useful for further experiments and the 

investigation of copolymer-colloid interactions at the air-water interface. 
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Figure 24 Copolymer molecules (PAA17-b-PMMA9) adsorbed on 1150 nm carboxylated 
polystyrene colloids (c = 1.7 mg∙mL-1) during simultaneous self-assembly at the air-water 
interface of a Langmuir trough at pH = 7. 

 

Moreover, a copolymer with similar block lengths of hydrophilic and hydrophobic blocks 

(PAA14-b-PMMA16) was used as additive. As can be seen from Figure 25A the isotherms for 

the different additive concentrations look similar as described before.  

At the beginning of monitoring the surface pressure-area isotherm, there is a shallow 

increase in surface pressure upon compression indicating that particles and block-copolymer 

molecules are still flexible but start to interact sterically and electrostatically with each 

other. The provided area for the colloid-copolymer mixture, where the surface pressure only 

slightly rises during compression (ΔAflex), becomes larger with increasing block-copolymer 

concentration (ccopolymer) with an overall percentage of > 55% of the whole area (ΔAtot). The 

data of the detailed characterization of the surface pressure–area isotherms can be seen in 

Table 4. For block-copolymer concentrations of 0.01-0.1 wt.% the colloids arrange in chain-

like or network structures. The monolayer at the air-water interface is a stiff film, which is 

characterized by the sharp increase in surface pressure at about Πstiff = 22-23 mN∙m-1. The 

shape of the isotherms for dispersions with higher copolymer concentrations (> 0.1 wt.%) 

closer resembles the isotherm of the pure copolymer (Figure 20B, Πstiff = 30.9 mN∙m-1). The 

corresponding surface pressures at the bend of the isotherm are higher than with smaller 

amounts of block-copolymer (Πstiff = 26.8 mN∙m-1 for 0.2 wt.% and Πstiff = 31.7 mN∙m-1 for 

ccopolymer = 0.5 wt.%) and follow a precise trend. 
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Figure 25 A) Surface pressure – area isotherms of 1150 nm carboxylated polystyrene colloids 
(c = 1.7 mg∙mL-1) mixed with different concentrations of PAA14-b-PMMA16 at spread at the 
air-water interface of a Langmuir trough at pH = 7 and B-F) SEM images of the corresponding 
deposited monolayers. 

 

Table 4 Characteristic data from the isotherms of a mixture of 1150 nm polystyrene colloids 
and different concentrations of the diblock-copolymer PAA14-b-PMMA16.  

ccopolymer / wt.% ΔAtot / cm² ΔAflex / cm² ΔAflex / % Πstiff / mN∙m-1 

0.01 147.3 84.1 57.1 21.8 

0.05 161.8 89.7 55.4 22.5 

0.1 184.2 103.8 56,4 22.9 

0.2 229.3 146.2 63.8 26.8 

0.5 242 168.1 69.5 31.7 

As can be seen from the images of the deposited monolayers, only very small amounts of 

0.01 to 0.1 wt.% of PAA14-b-PMMA16 are sufficient to change the assembled structures from 
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hexagonal to chains and network-like structures. Furthermore, Figure 25E and F clearly show 

a copolymer monolayer with single particles, rather than a colloid monolayer as can be 

estimated also from the surface pressure area isotherms (Figure 25A, light green and red 

compact lines). Probably, the particles sink into the subphase as the copolymer adsorbs on 

the particle surface, increasing the hydrophilicity and decreasing the contact angle of the 

particles at the air-water interface. 

The last candidate for manipulating colloid self-assembly is the low molecular weight 

diblock-copolymer with a larger hydrophobic than a hydrophilic block (PAA22-b-PMMA30). 

The surface pressure-area isotherm of the colloid-copolymer mixture is shown in Figure 26A. 

Table 5 summarizes the characteristic details of the isotherms. 

 

Figure 26 A) Surface pressure – area isotherms of 1150 nm carboxylated polystyrene colloids 
(c = 1.7 mg∙mL-1) mixed with different concentrations of PAA22-b-PMMA30 at pH = 7 and B-D) 
SEM images of the corresponding deposited monolayers. 

 

Again, the surface pressure – area isotherms for the self-assembly of the colloid - PAA22-b-

PMMA30 mixture with different copolymer concentrations (Figure 26A) look alike the other 

isotherms of above presented mixtures of colloids and copolymers. The shallow part of the 
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isotherm includes much smaller total areas but the percentage of the shallow part compared 

to the steep part of the isotherm is similar (ΔAflex >50%). The part of the isotherm with 

smooth increase in surface pressure is also followed by an abrupt increase in surface 

pressure and the formation of a very stiff film. Here, also a clear trend can be observed 

concerning the increase of the surface pressure at the bend of the isotherm (Πstiff) with 

increasing copolymer concentration. 

Table 5 Characteristic data from the isotherms of 1150 nm polystyrene colloids and different 
concentrations of the diblock-copolymer PAA22-b-PMMA30. 

ccopolymer / wt.% ΔAtot / cm² ΔAflex / cm² ΔAflex / % Πstiff / mN∙m-1 

0.01 80.6 40.8 50.6 19.2 

0.02 80.6 40.8 50.6 19.2 

0.05 93.4 51.4 55.0 20.6 

0.1 103.7 62.1 60.0 23.2 

 

Scanning electron microscopy images (Figure 26B-D) show that the architecture of the 

colloid-copolymer monolayers is of chain-like or network character. This geometry can be 

formed using very small amounts of the block-copolymer (0.01-0.02 wt.%). At 

concentrations of about ccopolymer = 0.05 wt.% the colloidal self-assembly is suppressed and 

the block-copolymer is mainly present at the interface which is confirmed by SEM pictures 

(Figure 26D). Using higher concentrations than 0.02 wt.% has the same effect as described 

before, the colloids disappear from the interface and sink into the subphase or agglomerate 

with the copolymer due to the simultaneous compression at the air-water interface. 

For further experiments the block-copolymer PAA14-b-PMMA16 was used as it shows the 

most promising results for tunable colloidal self-assembly of the polymeric nanoparticles. 
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6.2.1.2. The Effect of Additives in the Water Subphase on 

the Amphiphile-Driven Self-Assembly of Carboxylated 

Polystyrene Particles 

As described before, the hydrophilicity and therefore the contact angle of polymeric 

nanoparticles such as the negatively charged carboxylated polystyrene particles used 

throughout this work can be easily tuned by variation of the pH in the subphase. 

Additionally, the block-copolymers show different behavior at the air-water interface as it is 

shown in Figure 27A and B and they interact with the colloidal particles.  

 

Figure 27 A) Surface pressure – area isotherm of carboxylated 1150 nm polystyrene colloids 
(c = 5 mg∙mL-1), B) surface pressure – area isotherms of the diblock-copolymer PAA14-b-
PMMA16 and C) surface pressure – area isotherms of a colloid copolymer mixture 
(ccolloid = 1.7 mg∙mL-1, ccopolymer = 0.1 wt.%) at different pH values. D) SEM images of the 
colloid-copolymer mixture (C) at different pH values deposited on silicon wafers after 
compression at the air-water interface near the collapse point. 

 

Compression isotherms of the pure 1150 nm polystyrene particles at different pH values 

show the same steep slope independently on the pH. Only the initial surface tension is 

reduced and therefore the surface pressure increased with lower pH, as expected. The 

contact angle of the particles can be increased and the hydrophilicity decreased if the 

carboxyl functions at the particles surface are protonated at pH 4.0 (pKs 5.5).[134] The 
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interfacial properties of the block-copolymers can be also tuned by variation of the pH. The 

respective isotherms are presented in Figure 27B. Here, the change in hydrophilicity can be 

easily visualized following the surface pressure - area isotherm during compression. At high 

pH values (pH > 7) all the carboxylic functions of the poly(acrylic acid) are deprotonated 

creating the maximum available number of negative charges. Therefore, the hydrophilicity is 

maximized and the isotherm is probably predominantly characterized by the surface 

properties of the PMMA block as most likely, the PAA blocks are swollen and directed into 

the subphase as has been shown by Niwa et al. [158] for a similar system of block-copolymers 

of polystyrene and poly(acrylic acid) [158] The hydrophobicity of the block-copolymer is 

maximized by decreasing the pH to pH 4.0. Here, all of the acidic functions are protonated 

and therefore, the PAA block requires more space at the air-water interface due to the 

higher surface activity, which is indicated by the much higher initial surface pressure of 

Π = 27.7 mN∙m-1 rather than Π = 1.3 mN∙m-1 at pH 9. The carboxylic functions are 

deprotonated at high pH values, which results in an increased electrostatic repulsion of the 

PAA chains and, because of conformational changes, expanding of the PAA into the water 

subphase. 

The pH of the subphase affects the colloidal properties as well as the copolymer properties 

at the air-water interface. Figure 27C shows the effect of different pH values of the subphase 

on a colloid-copolymer mixture of 1150 nm carboxylated polystyrene particles mixed with 

0.1 wt.% of the diblock-copolymer PAA14-b-PMMA16. For better comparison the same 

amount of colloid-copolymer mixture was spread at the air-water interface of the Langmuir 

trough at different pH values. As can be clearly seen (Figure 27C) the isotherm at pH 4 and 

pH 7 have the same shape but at pH 7 the increase of surface pressure by compression of 

the interface is shifted to smaller areas. This has also been shown for the single components; 

colloids and copolymer molecules alone (Figure 19A and Figure 20B). The effect is based on 

the protonation or deprotonation of the carboxylic functions of the colloids and the 

copolymer molecules resulting a decrease of surficial area of copolymer and a smaller 

contact angle for the colloids from pH 4 to 7.[93] The direct application method of the colloid-

copolymer mixture has the disadvantage that components with high hydrophilicity, at high 

pH for instance, tend to sink into the subphase instead of self-assembling at the air-water 

interface. This may also be a reason for less material located at the air-water interface. 
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Moreover, the surface coverage of particles and copolymer molecules for the chosen system 

of 1150 nm polystyrene colloids mixed with 0.1 wt.% PAA14-b-PMMA16 was calculated. First, 

the area available for all copolymer molecules (Atot, copo) was determined from the surface 

pressure – area isotherm of PAA14-b-PMMA16 at pH 7 (Figure 27A) by extrapolating the steep 

part of the isotherm to the x-axis. The area per molecule (Amol, copo) was calculated as follows:  

M
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   (eq. 18) 
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A    (eq. 19) 

Here, Ncopo stands for the number of copolymer molecules at the air-water interface, NA for 

the Avogadro constant (NA = 6.022∙1023), Vapp for the volume of the copolymer solution 

spread at the air-water interface (Vapp = 25 µL) with a molecular weight (M = 2,900 g∙mol-1) 

for the copolymer and a distinct concentration (ccopo = 2.5 mg∙mL-1). The number of 

molecules located at the interface was found to be Ncopo = 1.3∙1016 (molar concentration of 

ncopo = 2.2∙10-8 mol). The overall available area for the copolymer (Atot, copo = 35.9 cm²) 

obtained from surface pressure isotherm (Figure 20A) divided by the number of molecules 

(Ncopo) results in the area of a single PAA14-b-PMMA16 molecule (Amol, copo) after compression 

at the interface. 

For the copolymer PAA14-b-PMMA16 the molecular area of a single copolymer chain was 

found to be Amol, copo = 0.3 nm². Afterwards, the mass (mcolloid, copo) and volume (Vcolloid, copo) 

for a colloid with radius R = 575 nm as well as for the copolymer was calculated using the 

following equations. 

 







 3π

3

4
RVm   (eq. 20) 

The density of the polystyrene colloid is ρcolloid = 1.05 g∙cm-³[159] and the density of the 

copolymer was estimated to be approximately ρcopo - 1.2 g∙cm-³ as the PMMA block of the 

copolymer is major present at the interface with a density of ρPMMA = 1.18 g∙cm-³[159], 

whereas the PAA block (ρPAA = 1.4 g∙cm-³)[159] is more directed into the water subphase. As 

the colloids have a spherical shape, the volume can be easily calculated. But as the real 
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structure of the copolymer is unclear the shape of the copolymer during compression is 

predicted to resemble to a random coil[158] which can also be roughly seen as a sphere with 

radius R. Therefore, the radius of the coil at the interface was calculated from the area per 

molecule as a circular area resulting R = 0.3 nm as the coil radius. 

²π RA    (eq. 21) 

nm  0.3
π


A
R   (eq. 22) 

Using only theoretical considerations for polymer chain statistics for a random coil[160] the 

calculation gives different results for the mean square end-to-end vector (<r>²) depending 

on the assumptions and the chosen limitations. It can have a large effect on the calculation if 

only the PMMA block of the copolymer or if also the PAA block occupies space at the 

interface. Equations 23 and 24 represent how the mean square end-to-end distance can be 

calculated. One possibility for the calculation of the chain end-to-end distance (<r>) as the 

square root of the mean square end-to-end distance is based on the typical freely jointed 

chain (eq. 23). The other model considers also the rotation of the chains with a fixed bond 

angle of Θ = 109.5° (eq. 24).  

2
bond

2 lNr    (eq. 23) 
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  (eq. 24) 

Here, l is the C-C bond length (l = 0.154 nm) between two carbon atoms and Nbond is the 

number of bonds in the polymer chain. The results for the calculation exemplary for the 

copolymer PAA14-b-PMMA16 are summarized in Table 6.The experimentally determined 

radius of a single block-copolymer chain at the air-water interface is smaller with R = 0.3 nm 

than the theoretical calculated mean square end-to-end distances <r>² in all cases. 

Considering that only the PMMA block is present at the air-water interface and using the 

freely jointed chain model, the calculated end-to-end distance of the polymer chain 

(<r>² = 0.7 nm) is a good approximation to the experimentally found size of the polymer coil 

at the interface. 
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Table 6 Results of the calculation for the mean chain end-to-end distance of the block-
copolymer PAA14-b-PMMA16 based on the freely jointed chain and the freely rotating chain 
model. 

 freely jointed chain freely rotating chain 

limitation Nbond <r>² / nm² Nbond <r>² / nm² 

only PMMA  

present at interface 
16 0.4 16 0.8 

PMMA and PAA 

present at interface 
30 0.7 30 0.9 

 

The model of the freely rotating chain might be useful in polymer solutions but at the air-

water interface in the absence of good solvents the polymer rather exists as a collapsed coil 

than a free swollen coil. Moreover, for such low molecular weight copolymers only very 

small surface areas per molecules are found as Niwa et al.[158] have also shown for PS14-b-

PAA7 copolymers. With a PS block length of 14 units the surface area per molecule was 

found to be about A = 1.1 nm². They predict the hydrophobic block to stand straight 

perpendicular to the water surface at high surface pressures. Another reason for the 

deviation of experimentally detected and theoretical calculated results might also lie in the 

assumption that all block-copolymer molecules are located at the air-water interface. 

Probably, due to the preparation of the copolymer solution or the spreading method an 

undefined amount of molecules might be dissolved in the water subphase instead of being 

located at the air-water interface. 

Equation 25 shows the calculation of the area which is covered only by the colloids 

(Atot, colloid) with total colloid number (Ncolloid) and only by copolymer chains (Atot, copo) with 

total molecule number (Ncopo) supposed that the interfacial fraction of both colloids and 

copolymer molecules is 100%. 

2tot
tot π R

m

m
ANA    (eq. 25) 
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For a mixture of colloids (total mass mtot, colloid = 5 mg) and copolymer (total mass 

mtot, copo = 5∙10-³ mg) which were mixed and spread at the air-water interface the area 

covered by colloids was calculated to be Atot, colloid = 62.1 cm² whereas the area occupied by 

the copolymer molecules is about Atot, copo = 105.3 cm². As can be seen, the self-assembled 

block-copolymers need 1.7 times more of the area which is covered by the colloids 

themselves. But from surface pressure – area isotherm (Figure 27) the area for the mixture 

at the interface was identified to be Areal, tot (mix) = 45.1 cm². Compared to the area of the 

mixture that is covered under theoretical considerations (Atheory, tot (mix) = 167.4 cm²) 

roughly 27% of the available interfacial area is occupied by the mixture. Probably, this 

indicates, as assumed before, that the copolymer molecules adsorb on the particle surface 

and do not only cover the air-water interface. As molecules adsorb on the colloids also 

hydrophilicity of the particles is increased resulting in the subsidence into the subphase. This 

is supported by the observation that direct application with a pipette leads to submersion of 

material during application. However, the structure of the fraction of the mixture remaining 

at the interface can be controlled. 

Further, at pH 9 (Figure 27C, dotted line) the shallow part of the isotherm is not that well 

pronounced as it was found for low pH values (Figure 27C, dashed line). But still the bend of 

the isotherm indicating the transition from a more flexible film into a stiff film is visible at a 

surface pressure of about Π = 17.0 mN∙m-1 for all different pH values. Moreover, SEM images 

after deposition near the collapse point show (Figure 27D-F) the dramatic influence of the 

pH variation in the subphase on the geometry of the resulting monolayers. At pH 4 

hexagonal dense packing of the colloids is predominantly present (Figure 27D), whereas at 

pH 7 the chain-like or colloidal network orientation is favored (Figure 27E). At pH 9 the 

colloid-copolymer mixture tends to form aggregates or multilayers and the overall hexagonal 

ordering is disturbed with more defects (Figure 27F). Probably, the repulsive forces of the 

colloids overcome the copolymer forces at low pH and the additional electrostatic repulsion 

induced by the acidic groups of the PAA14-b-PMMA16 block-copolymer are not sufficient 

enough to drive the particle self-assembly in another than hexagonal orientation. The 

electrostatic interactions are maximized at pH 9 as all functional groups of colloids and 

copolymers are deprotonated.[134] One could expect that particles and copolymer should be 

somehow equilibrated at the interface and that they are statistically distributed all over the 
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interface. But, the real shape and the interfacial behavior of the single blocks of the PAA-b-

PMMA stay unknown.[158] Probably, the PAA block swells noticeably more than the 

hydrophobic PMMA block and the chains are more elongated into the subphase. This 

interfacial behavior might cause a reduced electrostatic influence on the particles and 

among the block-copolymer molecules. As the molecular weight of the copolymer is quite 

low the steric repulsion between copolymer and colloids should play a minor role at high pH. 

At low pH, more material is present at the interface, whereupon steric repulsion is 

increased. Moreover, if exclusively mechanical interactions have nearly no influence on the 

self-assembly as it was shown for the surfactant Pluronic P103 it is obvious that the resulting 

particle arrangements show hexagonal orientation as it is the general and 

thermodynamically most stable case for particle self-assembly.  

Another possibility to control colloidal and copolymer interactions, especially the 

electrostatic interactions, is the addition of salts[161, 162] such as the monovalent sodium 

chloride (NaCl) to the subphase. The ions in the salt solution shield the surface charges. This 

shielding results in a reduced electrostatic repulsion between the particles. Park and 

Reynaert et al. [135, 146] showed that the addition of salt into the subphase drives sulfate 

functionalized polystyrene particles to aggregate at an oil-water interface and network-like 

structures are observed instead of hexagonal densely-packed monolayers. In contrast to 

Reynaert´s observations a carboxyl colloid-copolymer mixture at the air-water interface 

behaves completely different (Figure 28). Probably, hydrogen bonding between interacting 

copolymer molecules and colloids is crucial for the manipulation of the colloidal self-

assembly at the air-water interface. Figure 28 presents the impact of small salt 

concentrations in the subphase on the self-assembly of a colloid-copolymer mixture of 

1150 nm colloids and 0.1 wt.% PAA14-b-PMMA16. The surface pressure–area isotherms for 

different NaCl concentrations (Figure 28A) are presented as well as the corresponding SEM 

images of the resulting deposited monolayers (Figure 28B-E). The salt concentrations were 

varied from c = 0 mmol∙L-1 up to c = 100 mmol∙L-1. The colloid-copolymer mixture was spread 

at the salt solution and compressed. As can be seen from Figure 28A to E salt addition effects 

the self-assembly behavior of the colloid-copolymer mixture immensely. In the presence of 

1 mmol∙L-1 NaCl (Figure 28C) the colloids arrange no longer in chains as they do in the 

absence of salt (Figure 28B).  
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Figure 28 Surface pressure – area isotherms of a colloid-copolymer mixture consisting of 
1150 nm carboxylated polystyrene colloids and 0.1 wt.% PAA14-b-PMMA16 with different salt 
concentrations (cNaCl = 0 to 100 mmol∙L-1) in the subphase at pH 7, B-E) SEM images of the 
resulting monolayers after deposition at the collapse point. 

 

The particles start to organize partially in hexagonal arrangements, but there are lots of 

defects and voids visible. The corresponding isotherms (Figure 28A, compact and long 

dashed line) have nearly the same shape, a typical area with shallow increase of the surface 

pressure during compression followed by a sharp increase when colloids and copolymer 

form a very stiff film. The detailed characterization of the surface pressure – area isotherms 

is summarized in Table 7. 
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Table 7 Characteristic data from the isotherms of a mixture of 1150 nm polystyrene colloids 
and 0.1 wt.% of the diblock-copolymer PAA14-b-PMMA16 with different NaCl concentrations 
in the subphase at pH 7. 

cNaCl / mmol∙L-1 ΔAtot / cm² ΔAflex / cm² ΔAflex / % Πstiff / mN∙m-1 

0 74.3 39.0 52.5 22.1 

1 78.3 37.0 47.3 20.7 

10 80.51 30.0 37.3 16.0 

100 85.4 22.5 26.3 12.4 

The maximum surface pressure at the collapse point where multilayers are formed is 

reduced from Π = 43.9 mN∙m-1 to Π = 40.5 mN∙m-1. At higher salt concentrations such as 

cNaCl = 10 mmol∙L-1 and cNaCl = 100 mmol∙L-1 a non-network structures and larger islands of 

hexagonal arranged colloids (Figure 28D and E) are visible. The colloids come closer 

together. The maximum surface pressure just before the collapse point of the monolayer is 

reduced from Π = 34.4 mN∙m-1 for 10 mmol∙L-1 to Π = 32.0 mN∙m-1 for cNaCl = 100 mmol∙L-1 

(Figure 28A, dotted lines with short and longer distance). With increasing amount of salt in 

the subphase also Πstiff is decreased from Πstiff = 22.1 mN∙m-1 to Πstiff = 12.4 mN∙m-1 at 

cNaCl = 100 mmol∙L-1. But not only the surface pressure has been decreased, also the total 

area (ΔAtot) for the monolayer formation and the part of the isotherm where the copolymer 

chains are adjusted during compression (ΔAflex) is reduced upon increasing salt addition. The 

electrostatic repulsion of the copolymer chains is reduced upon charge shielding due to the 

presence of counter ions. Therefore, the electrostatic repulsive interaction of the swollen 

PAA block directly situated underneath the interface with the like-charged colloids is 

reduced and the particles can come closer together. The same is valid for the copolymer-

copolymer chain interaction. 

The results underline that the architecture of the colloid assemblies can be manipulated by 

variation of the electrostatic environment of colloids mixed with block-copolymers. This can 

either be done by variation of the pH or by the addition of salt. Further investigations on the 

interactions of the block-copolymer with the colloids, the interfacial shape and the behavior 

of the block-copolymer molecules are necessary for deeper understanding. Here, 

simulations can help to investigate the block-copolymer structure and the interactions of 

colloids with copolymer molecules under consideration of the forces at the interface. 
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6.2.1.3. Investigation of the Elastic Properties of the Colloid-

Copolymer Hybrid Film  

The colloid-copolymer film (1150 nm carboxyl functionalized polystyrene particles and 

0.1 wt.% PAA14-b-PMMA16) in its final configuration as it has been prepared during this work 

seems to be a very stable monolayer. The particles stay aligned in chains and networks even 

after transfer to a substrate. But, as this configuration is presumably not the 

thermodynamically favored one, relaxation of the film followed by another compression 

may lead to particle rearrangement resulting in different particle assemblies. The elastic 

behavior of the colloid copolymer film consisting of 1150 nm colloids and 0.1 wt.% of PAA14-

b-PMMA16 was investigated  by spreading the colloid-copolymer mixture at the air-water 

interface at pH = 7 and subsequent compression cycles. The monolayer was compressed 

near the collapse point at Π1 = 43.7 mN∙m-1 followed by relaxation, thus moving the barriers 

apart. Afterwards, the film was compressed again to a surface pressure of Π2 = 46.7 mN∙m-1, 

completely relaxed and compressed one more time to Π3 = 46.5 mN∙m-1. The resulting 

monolayer was transferred to a silicon substrate near the collapse point and investigated by 

scanning electron microscopy. Figure 29A shows the surface pressure – area isotherm of the 

monolayer which has been subjected to 3 compression-relaxation cycles. The SEM pictures 

of the monolayers after compression cycle I and cycle III are shown in Figure 29B-C.  

The shape of the surface pressure–area isotherm is the same as has been described more 

detailed above. The typical characteristics of the isotherm such as the value for the area of 

the colloid-copolymer mixture compressed into a very flexible film (ΔAflex), the entire area of 

the whole film formation (ΔAtot) and the surface pressure Πstiff at the bend of the isotherm 

have been listed in Table 8.  

As can be seen from the isotherm in Figure 29A and from Table 8, the surface pressure Πstiff 

is decreased with increasing compression-relaxation cycling number. The area of the more 

flexible colloid-copolymer film however, is decreasing with increasing cycle number. This can 

be caused by colloids and copolymer molecules that submerge into the water phase during 

compression especially near the collapse point and therefore they do not longer contribute 

to the surface pressure after relaxation and recompression. Probably, also the copolymers 

tend to reorganize forming a more densely package upon repeated compression. 
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Figure 29 A) Surface pressure–area isotherm for three sequent compression – relaxation 
cycles of a mixture containing 1150 nm polystyrene colloids and 0.1 wt.% PAA14-b-PMMA16 
spread at pH 7 at the air-water interface, B-C) SEM images of the resulting deposited 
monolayers near the collapse point after being compressed once (B) and three times (C). 

The monolayer at the interface is compressed to form densely patches of colloids and 

copolymer. These pre-formed structures of particles and copolymer molecules are quite 

stable and when thinking about densely packed colloidal monolayers the hexagonal 

arranged particles stay in their thermodynamic stable position surrounded by other colloids, 

even when the monolayer is carefully relaxed. Here, the copolymer molecules are also partly 

located in between the colloids and hinder them to crystallize in a perfect hexagonal lattice. 

After relaxation of the already formed densely packed monolayer (Figure 29A, compact black 

line) followed by another compression-relaxation cycle the chain-like arrangement of 

particles is not destroyed completely as can be seen in Figure 29C. 

Table 8 Characteristic data from the isotherms of a mixture of 1150 nm polystyrene colloids 
and 0.1 wt.% of the diblock-copolymer PAA14-b-PMMA16 resulting from successive 
compression-relaxation cycles of the same interfacial film. 

cycle # ΔAtot / cm² ΔAflex / cm² ΔAflex / % Πstiff / mN∙m-1 

I 93.8 51.7 55.1 24.7 

II 77.7 38.8 49.9 22.9 

III 69.8 33.2 47.6 21.6 
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Obviously, the network has been fragmented into shorter particle chains and also single 

particles surrounded by a copolymer film, thus, forming more statistically and equally 

distributed particle arrangements. Such equally distributed particle structures with an 

equilibrium distance are known for instance for silica particles grafted with PMMA 

brushes[163] or as described by Spatz et al.[164] for gold nanoparticles with polystyrene-block-

poly(2-vinylpyridine) on the surface. 

 

6.2.1.4. From Particle Chains to Square Arrangements– 

Architecture Prediction  

With small amounts of low molecular weight block-copolymers such as PAA14-b-PMMA16 

(ccopolymer = 0.01 wt.%) different structures of self-assembled nanoparticles can be obtained. 

Particles align not exclusively in network-like architectures. It is also possible to create 

square structures with small concentrations of block-copolymer. Figure 30A presents the 

surface pressure - area isotherm of 1150 nm carboxylated polystyrene colloids mixed with 

0.01 wt.% of the diblock-copolymer PAA14-b-PMMA16 and spread as an 67 vol.% ethanolic 

dispersion at the air-water interface of a Langmuir trough. The created self-assembled 

structures were deposited on silicon wafers at different surface pressures and analyzed 

using scanning electron microscopy. Figure 30B-G represent electron microscopy images of 

the deposited monolayers at distinct surface pressures labeled with arrows and letters in 

Figure 30A. As it is shown in Figure 30A the shape of the surface pressure – area isotherm is 

similar as described above. First, the surface pressure of the colloid-copolymer mixture at 

the interface only slightly increases (Figure 30A, region between points B-D) upon 

compression with decreasing area before it rises sharply at Π = 23.1 mN∙m-1. Further 

compression forces the particle chains to arrange even closer until large-scale square 

polymeric crystals are constructed (Figure 30A, region between points E-G).  
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Figure 30 A) Surface pressure – area isotherm of a mixture containing 1150 nm carboxylated 
polystyrene colloids and 0.01 wt.% PAA14-b-PMMA16, B-G) SEM images of the resulting 
monolayers deposited at distinct surface pressures. 

Figure 30B-D show the formation of network-like particle arrangements obtained when the 

barriers of the trough are held in the shallow part of the surface pressure–area isotherm 

during compression between Π = 1.5 – 23.0 mN∙m-1. Here, even at low pressures such as 

Π = 10 mN∙m-1 (Figure 30B) the particles are arranged in chains with intersections to form a 

network architecture across the whole interfacial area. Near the collapse point (Figure 30A, 

point F, Π = 40 mN∙m-1) large areas are visible with colloids assembled from closely oriented 

chains into closer packed squares. Only very small amounts such as 0.01 wt.% or even less of 

the diblock-copolymer PAA14-b-PMMA16 are sufficient to control the particle self-assembly 

and the construction of square crystals instead of typical hexagonal arrangements. Working 

with higher concentrations of copolymer in the colloids-copolymer mixture as described 

earlier does not result in square crystal formation. There, the network-like arrangement is 

favored. 
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6.2.2. Conclusion and Outlook of Section 6.2 

To summarize, the colloidal self-assembly can be easily controlled directly at the air-water 

interface of a Langmuir trough without using any special additional equipment or template 

substrates, only by adding amphiphilic copolymers to the dispersion. As has been presented 

the simultaneous arrangement of negatively charged carboxylated polystyrene colloids 

together with like-charged low-molecular weight copolymers such as PAA14-b-PMMA16, 

copolymers can be used to control the colloidal self-assembly at the air-water interface. The 

addition of polymers such as Pluronic P103, which are exclusively interacting sterically does 

not induce the formation of more complex architectures at the air-water interface. Chain-

like and square architectures are formed depending on the composition and concentration 

of the copolymer molecules added as well as by the surface pressure at which the 

monolayer compression is stopped. Moreover, the interfacial behavior either of copolymers 

or colloids can be manipulated by additives in the water subphase. The addition of 

monovalent salts such as NaCl to the subphase affects the self-assembly by reducing the 

electrostatic repulsion between particles and copolymers by shielding of the charges 

originating from deprotonating of the carboxylic groups on the particle surface as well as in 

the copolymer poly(acrylic acid) block. A network-like or square structure was not obtained 

by addition of salt to the subphase. Another possibility to control the electrostatic repulsion 

between the particles and the copolymer molecules is to alter the pH of the subphase. At 

lower pH values than pH = 4 the carboxylic groups on the particle surface as well as the 

copolymer poly(acrylic acid) block are completely protonated, which increases the 

hydrophobicity and simultaneously reduces the electrostatic repulsion due to the decreased 

number of negative charges. Therefore, the particles arrange preferably in hexagonal 

densely packed monolayers. At higher pH values such as pH = 9 all the carboxylic functions 

are deprotonated, increasing surface charge and therefore also electrostatic repulsion 

between the components. But neither at pH = 4 nor at pH = 9 chain-like structures or square 

arranged colloidal crystals are visible. Only at pH = 7 the additional forces originating from 

copolymers seem to support other than hexagonal orientation. Mainly electrostatic 

interactions seem to be the key feature for controlling interfacial assemblies rather than 

introducing only additional steric interactions. Potentially, additional dipole-dipole 

interactions,[157] which are created during mechanical compression of the interfacial hybrid 
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colloid-copolymer film force the particles to align in chains and networks. The statistical 

distribution of the copolymer molecules between the colloids creates an inhomogeneity of 

charge distribution. The negatively charged PAA blocks of the copolymer are squeezed 

against the carboxylic groups of the colloids upon compression and cause an additional 

repulsive electrostatic force which is not homogeneous across the interface but localized at 

distinct patches of the colloidal surface. Polymer grafted colloids are already predicted to 

behave sometimes more than patchy particles due to inhomogeneous polymer brush 

deviation across the particle surface.[165, 166] Patchy particles have preferred interaction sites 

and are well known to align in chains and network structures as not only diverse simulations 

have shown.[11, 12, 72, 74] 

What has been shown for block-copolymers such as PAA-b-PMMA should also apply for 

other statistically composed copolymers. Therefore, polymers can be produced exemplary 

composed of polystyrene and poly(acrylic acid) and co-assembled with particles at the air-

water interface. As most of the forces correlate with particle size such as van-der-Waals or 

capillary forces more detailed investigation has to be done to evaluate the influence of the 

particle size. So far only 1150 nm polystyrene particles were used to create more complex 

structures than hexagonal arrangements. Probably, the amphiphile mediated self-assembly 

of smaller particles leads to a different behavior under the same conditions used in hybrid 

system with large particles. Potentially, with smaller amounts of copolymers the forces 

between colloids and copolymer molecules can be manipulated more efficiently as the 

repulsive and attractive forces are reduced with decreased particle diameter. Moreover, 

simulations can be performed explaining in detail the behavior of the copolymer molecules 

at the interface and their interaction with the colloids to clarify what really happens directly 

at the interface. To confirm that the observed structures do not result from drying effects, 

but on manipulated force equilibrium directly at the interface the, colloid-copolymer 

mixtures can be embedded in PBCA via gas phase mediated interfacial polymerization as it 

has been described before. Additionally, the self-assembly of colloids in the presence of 

copolymer molecules can be visualized directly at the interface using a special Langmuir 

microscopy trough equipped with a sapphire window for upright and inverted microscopy. 

Here, the self-assembly can be easily followed directly and live at the interface. Therefore, 

also the events in the early stages of surface compression are accessible.  
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6.3. Controlling Local Optical Properties in Colloidal 

Monolayers 

This section is based on the publication “Switching light with light – advanced functional 

colloidal monolayers” by K. Bley, N. Sinatra, N. Vogel, K. Landfester and C. K. Weiss published 

2014 in Nanoscale, volume 6 on pages 492 (Ref. c3nr04897g). The publication is reprinted by 

permission from The Royal Society of Chemistry.[103] 

In the previous chapter the interactions of nanoparticles with amphiphilic molecules at the 

air-water interface were investigated in detail. Amphiphiles were used to manipulate the 

electrostatic environment of the nanoparticles to form non-hexagonal complex structures 

such as network and pseudo square arrangements. Another possibility to create more 

complex architectures and functional coatings is the formation of binary crystals by co-

assembly of two different colloid sizes at the air-water interface. Here, small particles are 

located at the interstitial sites of larger template particles arranged in a hexagonal densely 

packed lattice. The interstices of the binary colloidal crystal serve as a platform to create 

advanced coatings with locally confined functionality in the nanometer scale. This chapter 

presents the creation of light responsive nano-pixels using light-switchable nanoparticles 

situated at the interstices of large template particles. On the one hand, this chapter focusses 

on the production and the investigation of the physico-chemical properties of small light 

responsive nanoparticles. The influence of dye concentration, polymeric material on the light 

switching process and the persistence of the distinct switching states were investigated in 

detail. On the other hand, the particles were self-assembled into binary crystals and 

investigated with fluorescence microscopy and SEM. 

6.3.1. Concept of Photoswitchable Colloidal Pixels in 

Monolayers 

The concept for the creation of photoswitchable polymeric colloidal monolayers as a model 

for data storage application or light erasable barcoding is shown in Figure 31. Here, a special 

dye system consisting of a fluorophore and a photochrome is encapsulated in a polymeric 

environment in defined ratios for the production of photoswitchable colloids.[167] Thus, 

miniemulsion polymerization is the appropriate technique for encapsulation of various 

materials such as dyes in a controllable way.[58, 168, 169] The different isomerization states of 
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the photochromic dye CMTE were obtained by irradiation with UV and visible (VIS) light, 

respectively. The resulting polystyrene (PS) and poly(butyl acrylate) (PBA) based colloids 

were covered with an additional rigid shell of PS by seeded emulsion polymerization as 

protection for low glass temperature (Tg) polymers such as PBA and to narrow the size 

distribution of the colloids.[170, 171] The seeded colloids can be self-assembled for the creation 

of functional photoswitchable and highly ordered colloidal monolayers.  

 

Figure 31 Concept for the production of photoswitchable nano-pixels in colloidal monolayers 

with binary superstructure.[103] 

 

To produce functional photoswitchable colloidal monolayers a dye system based on a bis-

thienyl photochrome (cis-1,2-dicyano-1,2-bis-(2,4,5-trimethyl-3-thienyl) ethene, CMTE) and 

a perylene based fluorophore (N-(2,6-diisopropylphenyl)-perylene- 3,4-dicarboximide, PMI) 

was used (Figure 32A). Upon irradiation with UV or VIS-light the CMTE molecule undergoes a 

ring-closing or ring-opening cyclization (Figure 32), respectively which can be detected by 

UV-VIS absorption spectroscopy.  
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Figure 32 (A) Dye system consisting of the photochrome CMTE in the ring-opened ground 
state (yellow, left) and in the ring-closed excited state (red, right) obtained by irradiation 
with light of different wavelengths or temperature induced isomerization in relation to the 
fluorescent dye PMI (green, lower part), (B) quartz cuvettes with solutions of the 
photochromic dye in styrene after VIS-light irradiation (yellow, left) and after UV-light 
irradiation (red, right).[103] 

 

In contrast to the ring-open isomer (yellow solution, Figure 32B, left), the ring-closed excited 

isomer of the CMTE shows a broad absorption maximum at λ = 520 nm (red solution, Figure 

32B, right) and is able to absorb PMI´s emission between 500 nm < λ < 620 nm (Figure 

33).The emission of PMI is switched off. After VIS-light irradiation the emission can be 

switched on again. The dashed black part of PMI´s emission spectra (Figure 33) is the 

residual fluorescence emission which is not absorbed by the photochromic dye. Although 

the isomerization from the ring-closed into the ring-open state is thermodynamically 

favored, excellent thermal stability has been reported giving the photochrome a kind of 

“memory” ability.[172] The excited, ring-closed state thermally relaxes into the ring-open 

state due to the thermodynamically unfavorable strained ring configuration and the loss of 

aromaticity of the thiophene rings (Figure 32A).[173] Investigation of the thermal stability of 

CMTE in the monomers styrene and butyl acrylate showed that the half-life (t1/2) of the ring-

closed CMTE is about t1/2 = 5.2 min in solutions of styrene and t1/2 = 6.8 min in butyl acrylate, 

respectively. The rate constants were calculated from the linear decay fit (eqn. 26 and 27). 

nmxy    (eq. 26) 

mk    (eq. 27) 
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Here, y stands for the measured fluorescence emission, x is the time, n the intercept on the 

y-axis, and m is the slope from which the rate constant k is calculated (eq. 26, 27). As 

expected, the rate constants show that the thermally activated ring opening reaction of 

CMTE proceeds with almost similar reaction rates in both monomers. The solvents do not 

seem to restrict conformational changes during isomerization. This should differ when CMTE 

is embedded in a polymeric matrix. In this environment, the stiffness or flexibility of the 

polymer, expressed by the glass transition temperature (Tg), is expected to have a bigger 

influence on the geometry and conformational changes during cyclization and therefore on 

the switching process. 

 

Figure 33 Absorption and emission spectra showing the spectral overlap of the fluorophore´s 
emission (PMI, black compact line) and the photochrome´s absorption maximum (CMTE, 
ground state black dashed line, excited state light grey dashed line) in styrene.[103] 

 

In solutions and even in polymer films the molecules can easily diffuse thus compromise the 

addressability of a defined spatial storage “pixel” of information or readout. However, when 

incorporated into spatially confined colloidal particles, which are subsequently assembled 

into a two-dimensional array, diffusion of dye is effectively suppressed and individual pixels 

with resolution defined by the size of the colloids are obtained. The stability of the dye 

system can be increased by embedding the dyes into a polymeric matrix to prevent the 

thermally induced ring-opening cyclization that will compromise the storage of information 
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over longer periods of time is obtained. Moreover, addressable units of this dye system are 

necessary for a defined system of high addressability and easy readout. Therefore, small 

entities of the dyes were encapsulated in polymeric colloids using the miniemulsion 

technique.[58, 168] Such colloids can be used later in a self-assembly process to create colloidal 

pixels. As the polymeric matrix can affect the switching process of the dye because of 

geometric restrictions the influence of the polymeric environment was investigated using 

poly(butyl acrylate) (PBA) as a soft polymer with low glass transition temperature Tg (Tg << 

room temperature [RT]) and polystyrene as a rigid polymer (Tg >> RT). Polymers with low Tg 

such as PBA are not suited for a subsequent assembly of the formed colloids into a colloidal 

monolayer because they immediately fuse together and form a film. To prevent film 

formation and to allow the application of soft PBA colloids in self-assembly, a seeded 

emulsion polymerization approach was used to generate a rigid shell around the PBA 

colloids for protection.[171, 174] Another advantage of the seeded emulsion polymerization is 

the adjustment of size and reduction of size distribution,[174] which promotes the formation 

of monolayers with higher order during the self-assembly process. The size distribution plays 

an important role in the creation of densely packed colloidal monolayers. The highest overall 

ordering quality can be obtained using particles of uniform size, whereas colloids of broader 

size distribution reduce the ordering quality at the air–water interface. The photoswitchable 

colloids were self-assembled into ordered complex binary monolayers. With some geometric 

models the particle size range for the small particles which can be co-crystallized can be 

determined.[175] The binary monolayers prepared by the co-crystallization method are of 

high crystallinity and ordering degree because the interstices tolerate a broad range of sizes 

for the smaller colloids without disturbance of the larger particles self-assembly. 

 

6.3.2. Photo-Physical Properties of Nanoparticles with 

Photoswitchable Emission 

The miniemulsion polymerization is the appropriate technique to encapsulate multiple 

compounds in defined ratios in a variety of different polymeric materials. Therefore, a 

quantitative encapsulation of the dye system for switching fluorescence emission with 

adjustable ratios in the used polymers (PS and PBA), is guaranteed. To investigate whether 
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the polymeric matrix restricts the switching process styrene and butyl acrylate (BA) were 

used as monomers for the miniemulsion approach. The particle size was measured by 

photon cross correlation spectroscopy resulting a particle diameter (D) of D = 90 nm 

(standard deviation of σ = ±14 nm or ±17%) for the PS particles and D = 155 nm (σ = ±20 to 

30 nm or ±13 to 19%) for the PBA colloids (Table 9).  

Table 9 Physicochemical characterization of the nanoparticles prepared by miniemulsion 
polymerization and seeded emulsion polymerization 

sample polymer PMI:CMTE D / nm σ / nm distribution Tg / °C 

KB111213A PS 1:18 84 14 17 71 

KB111213B PS 1:37 94 16 17 72 

KB111213C PBA 1:18 159 20 13 -56 

KB111213D PBA 1:37 155 30 19 -49 

KB120621A PS-PS 1:18 191 17 9 88 

KB120621B PBA-PS 1:18 260 31 12 93 

 

Figure 34A and B show scanning electron micrographs of the prepared photoswitchable 

colloids by miniemulsion technique. The small polystyrene particles are rigid round shaped 

spheres whereby the PBA colloids flew on the silicon wafer due to their low Tg. Therefore, 

the creation of a protective shell, especially for low Tg polymers such as PBA is essential for 

further self-assembly and deposition approaches. The formation of a PS shell around the 

functional colloids, however, does not only serve a protective purpose. The size distribution 

of the colloids can also be narrowed by the process[174] as mentioned before. The particle 

size was also determined by photon cross correlation spectroscopy resulting a diameter of 

D = 191 nm (standard deviation of σ = ±17 nm or ±9%) for the PS covered polystyrene 

colloids (PS-PS) and D = 260 nm (σ = ±31 nm or ±12%) for the PS covered poly(butyl acrylate) 

colloids (PBA-PS). The optical properties of these colloids have also been investigated. The 

data were summarized in chapter 6.3.2.1. 
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Figure 34 Scanning electron microscopy images of colloids prepared by miniemulsion 
polymerization A) poly(styrene) (PS, D = 84 ± 14 nm), B) poly(butyl acrylate) (PBA, 
D = 159 ± 20 nm) and colloids produced by seeded emulsion polymerization of the smaller 
colloids from miniemulsion C) PS-PS (D = 191 ± 17 nm) and D) PBA-PS (D = 260 ± 31 nm) on 
silicon wafer substrates.[103] 

 

The glass transition temperature of polystyrene is lowered compared to pure PS 

(Tg = 100 °C)[176] resulting in a value of Tg ≈ 72 °Cdue to the encapsulation of hexadecane and 

the dye molecules (Table 9). The rigidity of polystyrene may lead to conformational 

restrictions for the geometric changes of the CMTE molecules during the irradiation process. 

Poly(butyl acrylate) is a “soft” polymer with Tg ≈ -50 °C.[176] Photoswitching is expected to 

occur faster in a softer and more flexible polymeric environment, which means that the 

emission intensity of the fluorescent dye should be reduced with higher rate constants in 

PBA than in PS. The irradiation experiments with UV and VIS-light of the different polymeric 

colloids with varying amounts of photochromic dye were described in the following 

chapters. 
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6.3.2.1. UV-light Induced Photocyclization Reaction in 

Colloids Prepared by Miniemulsion Polymerization 

The absorption of PMI's fluorescence emission can be described as intercomponent energy 

transfer between the fluorophore and the photochrome. Thus, the distance between the 

CMTE and the PMI molecules, which is determined by the concentration, affects the 

efficiency of the absorption of PMI's emission. The efficiency of the energy transfer 

decreases with increasing molecule distance. Thus, the influence of varying amounts of 

photochromic dye on the energy transfer or on the switching process, respectively, was 

investigated in different polymeric environments. The development of the fluorescence 

intensity of the PMI during the irradiation was followed by fluorescence spectroscopy as the 

emission maximum at a wavelength of λem = 561 nm changes with time due to the formation 

of the ring-closed or ring-open state of CMTE and, therefore, varying concentrations of 

molecules absorbing the fluorescence intensity of PMI. Emission spectra were recorded after 

given intervals of UV-light irradiation until no further increase of the emission signal was 

visible. Figure 35A shows the time dependent decrease of the emission of the fluorescent 

dye PMI in a colloidal system of polystyrene and poly(butyl acrylate) in the presence of the 

photochromic dye CMTE (ratios of PMI to CMTE such as 1:18 and 1:37). After about 3–4 min 

of UV-irradiation no further decay of fluorescence is visible, indicating that the entire CMTE 

has isomerized into the ring-closed form.  

From the data, the rate constants for the fluorescence intensity decrease at the maximum at 

λem = 561 nm were calculated with an exponential fit (eq. 28, 29). 

  0ytxexpAy    (eq. 28) 

1tk    (eq. 29) 

The variable y is the measured emission, x is the time, A the amplitude of the exponential fit, 

y0 is the offset, and t is the time constant from which the rate constant k is calculated. The 

rate constants for all particles during irradiation and thermally induced recovery were 

summarized in Figure 36. 
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Figure 35 Time dependence of the fluorescence intensity (λem = 561 nm) of the colloidal 
dispersions of PS and PBA particles during (A) UV-light irradiation, (B) VIS-light irradiation 
and (C) storage of the dispersions in the dark at room temperature for PMI/CMTE ratios of 
1:18 and 1:37. Only one representative black dashed fitting curve per diagram is shown for 
clarity.[103] 

 

The rate constants for the UV-light irradiation of colloids with encapsulated photoswitchable 

dye system show that the fluorescence emission intensity of the PMI in PS and in PBA can be 

successfully reduced by the ring-closed form of the CMTE. As expected, the switching in 

poly(butyl acrylate) proceeds about 60% faster than the photoswitching in polystyrene. The 

stiffness of the polystyrene matrix could decelerate the isomerization process because of 

geometric or steric restrictions. 
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Figure 36 Rate constants in logarithmic scale for the isomerization induced by irradiation 
with UV (light grey) and VIS-light (dark grey) as well as thermally induced isomerization 
(black) for the colloids with varying amounts of CMTE.[103] 

 

Moreover, the effect of CMTE concentration on the switching efficiency was investigated. 

The temporal evolution of the fluorescence emission of the dispersions upon irradiation with 

UV-light containing a higher amount of CMTE (PMI:CMTE such as 1:37, Figure 35A, black and 

grey triangles as data points) shows that the fluorescence stays at a constant level after 

3 min for PS and PBA, respectively. The emission of the system containing the dyes with ratio 

1:37 in PS as well as in PBA is significantly lower than that with a ratio of PMI:CMTE of 1:18 

(Figure 35A, black and grey squares as data points). As expected, the switching process with 

higher concentration of CMTE was faster with increasing amount of activated quenching 

molecules in the environment of the fluorescent dye (Figure 36). Compared to the rate 

constants of the particles with a ratio PMI:CMTE of 1:18, the rate constants of the 

intercomponent energy transfer process between the ring-closed form of CMTE and the PMI 

can be increased by 37% for the polystyrene particles and 21% for the poly(butyl acrylate) 

nanoparticles when using a higher amount of CMTE (ratio PMI:CMTE such as 1:37). 
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6.3.2.2. VIS-light Induced Reverse Cyclization Isomerization 

Reaction in Colloids Prepared by Miniemulsion 

Polymerization 

For the reverse isomerization process the samples were irradiated with visible light in the 

wavelength range of 515 nm < λ < 690 nm. The corresponding emission spectra (Figure 35B) 

show a time dependent increase of the fluorescence maximum at λem = 561 nm, which 

correlates with the increasing amount of CMTE molecules isomerized into the ring-open 

state, which are not able to quench the emission because of the missing spectral overlap of 

CMTE absorption and PMI emission. The initial intensity of PMI´s emission in polystyrene 

recovered after 20 min of irradiation. The switching rate constants were similar in the 

different polymeric environments of PS and PBA colloids and generally about an order of 

magnitude lower than that of the UV-induced isomerization (Figure 36). For the polystyrene 

particles with a dye ratio of PMI:CMTE of 1:37 a rate constant 20 times slower and for the 

dye ratio 1:18 a rate constant 10 times slower than the isomerization in solution were 

calculated for the VIS-light induced ring-opening reaction. For the PBA particles similar 

behavior was observed but the isomerization was found to be about 20 times slower for a 

ratio of PMI:CMTE of 1:18 and 30 times slower for a ratio of 1:37 than the isomerization in 

solution. 

 

6.3.2.3. Reversibility of the Cyclization Process 

It was shown successfully that the fluorescence emission of the colloids with the chosen dye 

system can be switched by optical stimulation at different wavelengths in UV and visual 

range. For any applications a high reversibility and high number of cyclization cycles of the 

emission are necessary. To perform several switching cycles of alternating irradiation with 

visible and UV-light of PS colloids with the ratio of PMI:CMTE of 1:18 were used. The 

dispersion was irradiated with UV-light first to ensure all CMTE is present in the excited 

state, whereas the particle´s emission was switched off. Afterwards, the ring-opening 

reaction was initiated by VIS-light irradiation isomerizing CMTE to the ground state, thus, 

switching the particles on. After 30 min of irradiation the fluorescence emission of the 

sample was investigated by fluorescence spectroscopy. Afterwards, the dispersion was again 
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irradiated with UV-light to initiate the ring-closing reaction. This procedure was repeated 

several times to obtain a higher number of switching cycles. The resulting emission 

intensities show the presence of the two states for fluorescence emission (on/off) in colloids 

for a well-repeatable isomerization, whereas the emission intensities can be restored almost 

completely for every switching cycle, indicating good photoswitchability (Figure 37). 

 

Figure 37 Fluorescence emission at λem = 561 nm of the PS dispersion (PMI:CMTE 1:18) for 
reversible switching between the on and the off state induced by alternating irradiation with 
UV and VIS-light over five switching cycles.[103] 

Slight intensity changes might origin from reduced power of the UV-lamp used throughout 

the irradiation experiments. Moreover, the temperature in the irradiation chamber 

increased under continuous irradiation with the UV-lamp which can lead to the thermally 

activated cyclization reactions of the CMTE resulting in different emission intensities of the 

colloids. 

 

6.3.2.4. Thermal Stability of the Photo-States in Colloids 

Prepared by Miniemulsion Polymerization 

The stability of the individual on/off states in the absence of a stimulus is of great 

importance. Storage of information can only be realized with stable and defined states. 

Although the ring-closed form of CMTE is the thermodynamically unstable state, the 

thermally activated ring opening isomerization can be decelerated by embedding the dye 
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molecules in a polymeric environment of a colloid. Figure 35C shows the time evolution of 

the fluorescence intensity at λem = 561 nm of UV-light irradiated dispersions and storage in 

the dark at room temperature. In both polymeric particles the fluorescence recovery is very 

slow. Complete recovery of the emission was not observed even after more than 10 days. 

The data acquired from the system with a ratio of PMI:CMTE of 1:37 are also shown in Figure 

35C. Compared to the nanoparticles with a lower ratio PMI:CMTE of 1:18 the fluorescence 

intensity decreases with a similar rate constant. Comparing the rate constants for the 

thermally induced restoration it is obvious that the reverse cyclization reaction into the ring-

open form proceeds with a similar velocity not depending on the nature of the surrounding 

polymeric matrix (Figure 36). The results underline the excellent thermal stability of the ring-

closed state of CMTE and the steric hindrance of the isomerization in a polymeric 

environment. The dye system is at least 20 times more stable when being embedded in a 

polymeric matrix than in solution and light-induced information can easily be stored for 

more than 10 days. 

To summarize, the optical properties and the rate constants confirm that the photoswitching 

with UV-light proceeds faster in a soft polymeric matrix such as poly(butyl acrylate)  

(Tg ≈ -50 °C) than in a rigid matrix such as polystyrene (Tg ≈ 71 °C) (Table 9). The VIS-light 

induced ring opening reaction has a rate constant which is about 10 times smaller than the 

rate constant for UV-light induced ring closing cyclization. The fluorescence emission can be 

reversibly recovered by alternating irradiation with visible light within the wavelength range 

of 515 nm < λ < 690 nm and UV-light for several switching cycles without any enormous 

photobleaching effects. The states of the photochromic system show excellent thermal 

stability when being embedded in polymeric colloids. 

 

6.3.2.5. UV-light Induced Photocyclization Reaction in 

Colloids Prepared by Seeded Emulsion Polymerization 

As mentioned before, the protection of the low Tg colloids with an additional shell of rigid 

polystyrene is on the one hand necessary for self-assembly processes. On the other hand it is 

a well-known possibility to narrow the size distribution of PS and PBA seed colloids produced 

by miniemulsion polymerization.[174] As the seed particle ideally does not change, the 
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resulting optical properties are expected to be similar to that of the seed particle, with the 

exception of lower emission intensity. Although the emission intensity is less intense than 

that from the seed particles the decrease in the emission maximum at λem = 561 nm with 

proceeding isomerization is still visible and follows an exponential decay (Figure 38A).  

 

Figure 38 Time dependent development of the fluorescence intensity at λem = 561 nm of the 
colloidal dispersions of seeded PS–PS and PBA–PS particles during (A) UV-light irradiation, (B) 
VIS-light irradiation and (C) storage of the dispersions in the dark at room temperature for 
the ratio of PMI:CMTE of 1:18 (black and grey dots as data points). 

 

The corresponding rate constants of the seeded particles (Figure 36, light grey bars) show 

that the switching process during UV-light irradiation was decelerated by 58% for the PS-PS 

and about 80% for the PBA-PS particles compared to the original seed particles from 

miniemulsion. The differences may arise from scattering effects due to the enlargement of 

the particles and the additional shell of polystyrene whereby less light reaches the inner 

functional core of the hybrid seeded particles or light is scattered by the rigid PS matrix. 
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6.3.2.6. VIS-light Induced Reverse Cyclization Isomerization 

Reaction and Thermal Stability of the Photo-States in 

Colloids Prepared by Seeded Emulsion Polymerization 

The fluorescence recovery induced by irradiation with visible light with a wavelength range 

of 515 nm < λ < 690 nm is shown in Figure 38B. After 15 min the fluorescence intensity 

reaches the initial value. The hybrid particles with an additional protective shell of 

polystyrene show similar switching behavior as the seed particles prepared by miniemulsion 

polymerization. The switching process seems to be slightly decelerated but the rate constant 

lie in the same dimension as the ones for the miniemulsion polymerization (Figure 36, dark 

grey bars). This effect might be attributed to scattering effects of the larger particles and of 

the polystyrene matrix. 

Figure 38C shows the time dependent development of the thermally induced ring opening 

reaction of CMTE. The increase of the fluorescence intensity of PMI at λem = 561 nm was 

plotted versus time and the rate constants were calculated from the linear fit (eq.26, 27) 

(Figure 36, black bars). The rate constants for the thermally induced cyclization of the CMTE 

were found to be reduced by 78% for PS-PS and 58% for PBA-PS particles compared to the 

seed particles from miniemulsion polymerization but are still of the same magnitude (Figure 

36). An undesired back-switching to the initial state was not observed for PS–PS colloids in 

the timeframe of the experiment (12 days), thus underlining the excellent stability of the 

photo-states when incorporated in polymer particles. 

 

6.3.3. Self-Assembly of Photoswitchable Colloids at the 

Air-Water Interface into Complex Binary Monolayers 

The optical properties of photoswitchable colloids were investigated and an excellent 

thermal stability for the on/off states in all cases was successfully shown. For the creation of 

a model system for data storage or light erasable barcoding the colloids needed to be 

precisely located in defined positions. This can be realized using the self-assembly approach 

of colloids at the air–water interface of a Langmuir trough into two dimensional highly 

ordered colloidal monolayers. The primary colloids with a size distribution of σ > 15% were 
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not suitable for the production of high quality colloidal monolayers. Therefore, larger 

particles were produced by seeded emulsion polymerization with a narrower size 

distribution of σ = 9% (PS-PS particles) and σ = 12% (PBA-PS) (Table 9). If the size distribution 

is too broad, the particles cannot form a hexagonal lattice and the arrangement at the 

interface is disturbed. Another possibility to create highly ordered monolayers is the 

formation of a binary colloidal structure. Thus, two differently sized particle systems are co-

assembled at the air-water interface. Here, the larger particles serve as template and form a 

hexagonal densely packed lattice whereby the smaller particles are located at the interstices 

of the larger template particles. The size of the interstitial sites depends on the contact angle 

of the colloids at the air-water interface and the immersion depth.  

 

Figure 39 Determination for the size for the interstitial sites´ area (orange) of binary 
monolayers provided by the large particles at the air-water interface depending on the 
contact angle Θ: A) Θ = 0°, colloids are completely immersed into the aqueous phase yielding 
the maximum area for the smaller particles to be located at, B) Θ = 90°, the particles are half 
immersed with the depth in the range of particle radius yielding the minimum area for the 
small particles, C) Θ between 0 to 90°, the particles are partly immersed into the aqueous 
phase.[103] 

If the particles had a hypothetical contact angle of 0° (Figure 39A), they would be completely 

immersed in the aqueous phase of the air-water interface. This scenario is physically 

impossible because the particles will not adhere to the air-water interface. It provides, 

however, the hypothetical upper limit for the area/volume in the interstitials. At a contact 

angle Θ = 90° (Figure 39B) the colloids are half immersed in the aqueous phase with a depth 

in the range of the particle radius. Thus, the gap size for the small particles is minimal. If the 

contact angle for the large particles differs from the minimum or maximum case the profile 

of the interstitial site changes (Figure 39C). 
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In Figure 39, r is the radius, d the diameter, Θ the contact angle, rc the radius of the particles 

with a contact angle 0 < Θ < 90° and an immersion depth hc and ht as the part of the large 

colloids which reaches out of the aqueous phase. The height ht at a given contact angle e.g. 

of 40° for partially immersed particles can be calculated using (eq. 31, 32). At a given contact 

angle of 40° the height hc is about 

  nm 440 cosrhc (eq. 30) 

nm 135 ct hrh   (eq. 31) 

nm 370 2
ttc hrh2h   (eq. 32) 

The new profile of the interstitial sites, where the smaller particles are located, can be 

described as a triangular area whereas the corners were cut off by circular segments with 

radius rc (Figure 40, orange area):  

nm 410 cr2Dx   (eq. 33) 

Carboxylated polystyrene particles of about D = 1150 nm were used within the experiments 

as template to create localized and defined nano-pixels from the particles with 

photoswitchable emission. The smaller seeded colloids are located in the interstices of the 

resulting hexagonal lattice of the large particles. Therefore, it was possible to create binary 

colloidal crystals of high ordering quality, which can be seen in the resulting scanning 

electron micrographs (Figure 41A and D). These two dimensional crystals have domain sizes 

of several hundreds of µm2. 

The evaluation for the possible particle assignments of the seeded particles at the interstitial 

sites was done geometrically by assumption of the particle´s contact angle of 40° at the air-

water interface at pH = 7 considering equations 5 to 8. As the particles have a size 

distribution of about σ = 9% for the seeded polystyrene particles and σ = 12% for the seeded 

poly(butyl acrylate) particles the standard deviation σ of the Gaussian fit for the 

determination of the particle size can be used to describe the particle sizes as s (diameter d-

σ), m (d) and L (diameter d+σ) (Figure 42 and Figure 43) measured by photon cross 

correlation spectroscopy. The occurring arrangements were analyzed using the scanning 

electron micrographs of the binary colloidal monolayer for both hybrid particle systems. 
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Figure 40 Sketch for the area of the interstitial sites partially immersed into the aqueous 
phase at the air-water interface with radius rc, diameter D and distance x depending on the 
contact angle of the colloids.[103] 

 

 

Figure 41 (A) SEM image of an ordered binary colloidal monolayer with D = 1150 nm 
template colloids and photoswitchable PS–PS seeded particles with a number ratio of 
Nlarge/Nsmall of 1:6 and (B) the corresponding statistical analysis for the possible 
arrangements of the smaller photoswitchable colloids located in the interstitial positions, (C) 
confocal laser scanning micrograph of a binary monolayer from seeded PS–PS particles 
shown in (A), (D) SEM image of a binary monolayer with D = 1150 nm template colloids and 
small photoswitchable PBA–PS seeded particles with a number ratio of Nlarge/Nsmall of 1:6 and 
(E) the statistical analysis for the monolayer shown in (D) for PBA–PS colloids.[103] 
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The most frequently occurring arrangements are shown in Figure 42 for seeded polystyrene 

and in Figure 43 for the seeded poly(butyl acrylate) particles. The size of the interstitial gaps 

between the particles was calculated as described before and the seeded PS–PS and PBA–PS 

particles correlated with the size of the gaps. The resulting geometries were distinguished 

and identified in the scanning electron micrographs (Figure 41A and D). The number ratio of 

larger to small particles Nlarge/Nsmall was adjusted to 1:6 at the interface. The statistical 

evaluation of the binary monolayers shows a predominance of 3 colloids (76%) located in the 

interstitial positions for the PS–PS particles (Figure 41B), rather than the maximum 

arrangement of 6 colloids (up to 6%), which is also in agreement with the adjusted number 

ratio of Nlarge/Nsmall of 1:6 for template to photoswitchable particles. Figure 41E shows the 

statistical evaluation of the binary monolayer of template particles with photoswitchable 

PBA–PS colloids. As the PBA–PS particles are larger (D = 260 nm) than the PS–PS particles 

(D = 191 nm), the maximum number of particles for the co-localization at the interstitial site 

is a geometrical arrangement of 3 colloids (see Figure 43). The histogram shows again a 

predominance of 3 colloids (63%) located in the interstitial positions (Figure 41E). As can be 

seen in the scanning electron microscopy (SEM) images and from the statistical evaluation 

(Figure 41A, B, D and E) the binary colloidal monolayers tolerate a relatively broad size 

distribution of the smaller colloids located at the interstitial sites of the carboxylated PS 

template particles, without disturbing the high order of the template colloids. With the 

number ratio of large particles to small particles (Nlarge/Nsmall) the configuration can be 

adjusted reliably, even with broadly distributed colloids. 

The binary colloidal monolayer of non-fluorescent template PS particles and 

photoswitchable PS–PS particles was also investigated by confocal laser scanning 

microscopy. The corresponding CLSM image (Figure 41C) shows a very high degree of 

ordering, where the larger template colloids are arranged in a hexagonal lattice (dark spots) 

and the interstitial sites are filled with the smaller fluorescent seeded particles (green spots). 

Therefore, it would be possible to address one single interstitial site as a nano-pixel in a very 

efficient and defined way because of the high crystallinity of the functional colloidal 

monolayer. 
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Figure 42 Observed arrangements for the small seeded polystyrene particles at the 
interstitial sites of partially immersed larger colloids (D = 1150 nm) co-assembled as a binary 
monolayer A and B) for two particles of size m and L, C to G) for three particles as single 
particle sizes or in combination, H to L) for four particles at the interstitial site as 
combinations of all occurring sizes, M to Q) for five particles in combination with a hole and 
R to V) for six particles of single size or in combination.[103] 
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Figure 43 Observed arrangements for the small seeded poly(butyl acrylate) particles at the 
interstitial sites of partially immersed larger colloids (D = 1150 nm) co-assembled as a binary 
monolayer A, B and C) for one particle of size s, m and L, D to G) for two particles with all 
sizes and in combination with a hole, H to N) for three particles at the interstitial site as 
combinations of all occurring sizes.[103] 

 

6.3.4. Photoswitching in Colloidal Monolayers 

The successful use of a colloidal monolayer to reversibly store (and erase) information with 

light is shown. An optical fluorescence microscope was used for the investigation of the 

photoswitching of the colloidal monolayer. As colloids photoswitchable poly(butyl acrylate) 

particles were self-assembled at the air water interface and transferred onto a substrate. 

The substrate was first irradiated with visible light to obtain the ring-open state of the CMTE 

and the highest possible fluorescence intensity of the colloidal particles (Figure 44A).  
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Figure 44 Optical micrographs of a monolayer from photoswitchable PBA colloids using a 
fluorescence microscope with an 2.5x objective and different optical filters (DAPI-filter, 
λex = 360 nm and λem = 420 nm and eGFP-filter, λex = 472 nm and λem = 520 nm) (A) after 
irradiation with VIS-light for 5 min using the eGFP-filter, (B) after irradiation with UV-light for 
5 min using the DAPI-filter (circular part of the monolayer), (C) after excitation with VIS-light 
at λex = 472 nm for 120 ms (eGFP-filter), (D) after excitation for 180 ms, (E) after excitation 
for 240 ms and (F) after excitation for 300 ms.[103] 

Afterwards, parts of the substrate were exposed to UV-light to induce the photocyclization 

reaction of the CMTE into the ring-closed state, whereas the fluorescence emission of the 

fluorophore is absorbed and the fluorescence is switched off in the exposed areas  

(Figure 44B). Irradiation with visible light can be used to reversibly erase the stored 

information (Figure 44C to F). After illumination for overall 300 ms, a complete recovery of 

the fluorescence intensity in the monolayer was observed. 
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6.3.5. Conclusion and Outlook for Section 6.3. 

In summary, an easy and fast method for the production of functional colloidal monolayers 

with reversibly photoswitchable nano-pixels was presented. The photoswitchable functional 

polystyrene and poly(butyl acrylate) colloids were synthesized using the miniemulsion 

polymerization process to incorporate the appropriate dye system based on a perylene as a 

fluorophore (PMI, N-(2,6-diisopropylphenyl)-perylene-3,4-dicarboximide) and a bis-

arylethene as a photochrome (CMTE, cis-1,2-dicyano-1,2-bis-(2,4,5- trimethyl-3-thienyl) 

ethene). Thus, addressable photoswitchable entities were generated. The light-induced 

switching of the fluorescence intensity of the fluorophore via selectively enabling and 

disabling energy transfer to the photochrome molecule in the confined environment of a 

colloidal particle was investigated in detail. The incorporated dye system still shows a 

wavelength range (λ > 620 nm) where the fluorescence emission of the fluorescent dye 

(PMI) cannot be absorbed by the excited isomer of the photochromic dye (CMTE). Because 

of the residual emission, the particle cannot be completely switched off. To achieve this, 

either the photochromic dye can be modified by introducing functional groups at the thienyl 

side groups or at the ethene itself in form of a functional side chains.[177] The other 

possibility would be to modify or exchange the fluorescent dye by a dye whose fluorescent 

signal can be completely absorbed by the photochrome meaning λem should be shifted to 

smaller wavelengths. The only requirement for the new dye system must be the easy 

readout and excitation by a conventional lasers or LED irradiating light of distinct 

wavelengths.  

Moreover, the thermal stability of the excited state of the photochrome can be increased by 

a factor of more than 20 compared to the stability in solution by embedding the dyes in a 

polymeric matrix of colloids. Information stored in the colloids by the photoswitching 

process can thus be retained over at least several days at room temperature without risking 

of degradation by uncontrolled cycloreversion reactions. The precise incorporation of 

defined amounts of the dye molecules into polymeric matrices by miniemulsion 

polymerization can be used to optimize the quenching of the fluorophore emission. But, 

concerning the persistence of the single excited states of the photochrome further 

absorption and fluorescence emission measurements should be done. The lifetime of the 

ring-closed isomer of the photochrome for instance might be increased by cooling the 
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irradiated colloids or the monolayer, thus the thermally induced reverse ring opening 

reaction can be suppressed even further. Heating of the colloids in contrast could accelerate 

the ring opening cyclization to erase the stored information faster.  

The light-induced switching of fluorescence is completely reversible over several cycles 

without observation of major fluorescence intensity loss. But the number of alternating 

irradiation switching cycles should be increased to proof the overall persistence of the dye 

system and the stability against photobleaching. Moreover, the small broadly distributed 

colloids from miniemulsion polymerization were covered with a polystyrene protection shell 

by seeded emulsion polymerization resulting larger particles of narrower size distribution. 

With the seeding process the thermal stability of the excited photochrome isomer at room 

temperature could be also increased by almost more than 50%.  

Functional colloidal monolayers were prepared using the co-assembly method of colloids of 

two distinct sizes at the air–water interface. The obtained binary monolayers of functional 

seeded particles and plain larger particles showed high crystallinity of several hundreds of 

µm² resulting a high addressability of the functional colloids. The possible arrangements for 

the seeded particles located at the interstices of the hexagonally ordered template particles 

were assessed from the scanning electron micrographs, resulting in a preferred number of 

three particles at the interstices for the seeded polystyrene as well as for the seeded 

poly(butyl acrylate) particles. The preparation method of functional binary monolayers 

offers the possibility to self-assemble colloids with broad size distribution into highly ordered 

hexagonal lattices. Therefore, even single particles or smaller particle arrangements can be 

addressed. For the preparation of large-scale binary photo-responsive colloidal monolayers 

the co-self-assembly process should be improved to result higher crystallinity on bigger 

length-scales. Very important is the attentive sample preparation and the right adjustment 

of the particle number ratio Nlarge/Nsmall. Further, the pixel distance and the pixel size can be 

adjusted by variation of the template particle size and the number ratio of large to small 

particles (Nlarge/Nsmall). Using smaller particles decreases the distance between the interstitial 

sites and therefore the interspace of the nano-pixel formed by the photoswitchable 

particles. The pixel size can be easily reduced by decreasing number of small particles 

(Nlarge/Nsmall increased) whereby an increase of Nsmall generates bigger nano-pixels. 
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The reversible optically induced storage and elimination of information in such monolayer 

structures was demonstrated successfully. This technology is envisioned to be of broad 

interest in information technology as it provides a cheap, simple and efficient way to 

generate precise substrates for optical manipulation at micro- and nanoscale. 

 

6.4. Colloidal pH Sensors for the Visualization of pH 

Dependent Processes in Cells 

This section is based on the publication “Nanoprobing the acidification process during 

intracellular uptake and trafficking” by S. Lerch, S. Ritz, K. Bley, C. Messerschmidt, C. K. 

Weiss, A. Musyanovych, K. Landfester and V. Mailänder published 2015 in Nanomedicine: 

Nanotechnology, Biology and Medicine, Volume 11, Issue 6, Pages 1585–1596. The 

publication is reprinted by permission from Elsevier.[178] 

In the last sections colloids and their self-assembled structures were investigated concerning 

locally confined physico-chemical properties such as contact angles and particle interactions 

directly at the air-water interface during self-assembly processes. It was also shown how 

optical properties can be modified by using functional stimuli-responsive materials and 

controlled particle interactions to form light-switchable pixels in the nano- and micrometer 

scale with high localized resolution.  

This chapter focusses on the environmental interaction of stimuli responsive nanoparticles 

not at the air-water interface but during interaction with cells. The path of nanoparticles or 

nanocapsules through cells can be monitored by using pH-responsive nanoparticles. Such 

polymeric nanosensors have been developed as probes for real-time imaging and dynamic 

monitoring of various ions such as H+, Ca2+, Mg2+, K+, Na+, and Cl-, which are important for 

cellular metabolism.[179-182] Nanoparticle based sensor systems have several advantages in 

comparison to highly invasive methods, like e.g. microelectrode probing or the use of 

unconjugated single fluorescent probes: i) due to their small size and inert material they are 

physically and chemically less-invasive than macroscopic probes, ii) the local concentration 

and therefore signal strength of the chemical probe can easily be tuned due to the high 

surface-to-volume ratio[183] and iii) surface functionalization as targeting agents may lead 
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them towards specific sites at or in cells. Nanoparticles have emerged as promising tools to 

study mechanisms innate to cells such as endocytotic uptake machineries as well as to 

function as novel delivery systems for drug transport and for addressing specific cell or tissue 

types. Most nanoparticles are taken up by cells via various endocytotic mechanisms and 

follow the endo/lysosomal pathway.[184] The pH of these compartments is lowered during 

the maturation of the vesicles - from early to late endosomes to lysosomes - to trigger the 

release of receptor-bound ligands,[185] or to digest debris or nutrients. This acidification can 

be used to trigger the prospective nanocarriers to release their payload at a distinct position 

inside the cell[186] which can be useful for drug delivery applications in nanomedicine. 

In this work polymeric nanoparticles were synthesized and functionalized with a pH sensitive 

dye. The physico-chemical properties were investigated in detail and pH responsiveness of 

the dye and the functionalized nanoparticles were evaluated by UV-Vis spectroscopy. The 

cell experiments and investigation of the nanoparticles´ pathway through the cells by 

confocal laser scanning microscopy were performed by S. Ritz. Transmission electron 

microscopy was measured by C. Messerschmidt. 

 

6.4.1. Concept for the Visualization of Time-Dependent pH 

Processes inside Cells by Functionalized Nanoparticles 

Many colloid based drug delivery approaches rely on a detailed knowledge of the 

acidification process during intracellular trafficking of endocytosed nanoparticles. Therefore, 

a nanoparticle based pH-sensor can be constructed composed of a simple polymeric 

nanoparticle with surface active groups and a pH sensitive dual wavelength fluorescence 

emitter which is stimulated by varying pH environments. Here, time-dependent pH 

processes in cells can be monitored by fluorescence microscopy imaging. A requirement for 

the pH responsive nanoparticles is the non-toxicity for the intercellular applications. 

Therefore, it is beneficial to prepare nanoparticles without using any surfactant. The 

emulsifier free emulsion polymerization is the appropriate technique as nanoparticles with 

narrow size distribution and a high surface group density can be generated without usage of 

additional surfactants.[21] Seminaphthorhodafluor-1 (carboxy SNARF-1, Figure 45A) as well-

known commercially available dual-wavelength emitter serves as pH sensitive dye, can be 
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easily coupled as succinimidyl activated ester (SNARF-1-NHS, Figure 45C) with amine 

functionalities on the particle surface (Figure 45C). 

 

Figure 45 (A) Free dual wavelength dye carboxy SNARF-1, (B) ester protected dye 
acetoxymethyl ester acetate (SNARF-1-AM) (C) coupling of the pH sensitive dye carboxy 
SNARF-1-NHS onto amine functionalized nanoparticles, (D) switching between deprotonated 
(A-) and protonated (HA) form of the dye molecules coupled onto particles (SNARF-1-NPs) by 
shifting the pH value from basic to acidic.[187] 

 

The SNARF-1-NHS is then covalently bound to the particle surface by creation of an amide 

bond between the carbonyl group of the dye and amine groups of the nanoparticles. The 

SNARF-1-NPs are able to change their fluorescence emission wavelength upon pH variation. 

There are two forms of the dye molecule as can be seen in Figure 45D, the deprotonated 

molecule in basic environments (A-) and the protonated form in acidic environments (HA) 

that show different emission maxima at λem, HA = 580 nm and λem, A- = 640 nm. Such NPs with 

an accessible probe dye can be used as nano-sensors for intracellular and intravesicular 
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time-dependent pH process monitoring as the color of these nanoparticles changes with 

time (Figure 46). The local pH changes during nanoparticle transport in cells can therefore be 

easily visualized by fluorescence microscopy. The results of such processes can be used to 

design for instance nanocarriers loaded with drugs or any other targets with controllable pH 

responsive release mechanisms. 

 

 

Figure 46 Schematic concept for the enlightening of time-dependent pH processes inside 
cells for e.g. the design of nanoparticular drug carriers with pH sensitive release 
mechanism.[187] 

 

6.4.2. Coupling of the pH-Responsive Dye SNARF-1-NHS 

onto Amine Functionalized Nanoparticles 

Positively charged amine functionalized polystyrene nanoparticles as carriers for the pH 

responsive dye SNARF-1-NHS were synthesized by soap-free emulsion copolymerization in 

the presence of the comonomer amino-ethyl methacrylate hydrochloride (AEMH) following 

the procedure of Ganachaud et al. [188, 189]After purification, the average particle size and size 

distribution were measured by angle-dependent dynamic light scattering resulting a 

hydrodynamic radius (Rh) of Rh = 61 nm (Figure 47A) or particle diameter of D = 122 ± 8 nm, 

respectively. Figure 47B shows a scanning electron micrograph of the amine functionalized 

uniformly distributed polymeric particles.  
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Figure 47 (A) Diagramm of the hydrodynamic radii (Rh) of nanoparticles before and after 
coupling of the pH-responsive dye SNARF-1-NHS versus the light scattering angle, (B) SEM 
image of the amine functionalized nanoparticles prepared by soap-free emulsion 
polymerization.[187] 

 

The surface properties of the colloids were further characterized. A positive zeta-potential of 

45 ± 6 mV was measured and the number of amine groups on the particle surface was 

determined using the fluorescence assay[188] described in chapter 7.4 resulting 1.5∙10-

5 mol∙mL-1 or 2.5 amine groups per nm². 

Furthermore, the amine functionalized nanoparticles were coupled with carboxy SNARF-1-

NHS and used to create nanoparticular pH sensors. The covalent coupling created an amide 

bond between the esterified carbonyl group of the dye and the amine group on the particle 

surface (SNARF-1-NP) as shown in the reaction scheme (Figure 45C). The zeta-potential of 

the dye coupled SNARF-1-NPs decreased from 45 ± 6 mV to 19 ± 5 mV which confirmed a 

decrease of positively charged groups on the particle surface. The determination of 

remaining amine groups on the particle surface after coupling with SNARF-1-NHS by 

fluorescamine assay was not possible because the fluorescence emission of the 

fluorescamine at λem = 470 nm is absorbed by the SNARF-1 dye molecules (λex = 488 nm and 

λex = 514 nm) resulting no detectable signal. The particle size after dye coupling was 

measured again with angle-dependent dynamic light scattering resulting an average particle 

diameter of Rh = 350 nm (Figure 47A). An explanation for such an increase in particle size can 

be the destabilization of the particle dispersion by reduced electrostatic repulsion and by 

charge shielding of the coupled dye onto the particle surface. Additionally to reduced 
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interactions between the amine groups also increased attractive interactions between the 

amine groups of the particles and the carboxylic acid functions of the SNARF-1 molecules can 

appear. But also the enormous dilution for DLS measurements can lead to destabilization 

and aggregation of the particle dispersion. In buffer systems such as used for confocal laser 

scanning microscopy or either in cell culture medium no aggregation was visible. From 

similar experiments with comparable particles prepared by miniemulsion polymerization a 

size increase of about 2 nm was measured.[190] The essential difference between the 

particles prepared by miniemulsion and the ones synthesized by soap-free emulsion 

polymerization is the usage of surfactants. The colloids from miniemulsion polymerization 

were additionally stabilized with the non-ionic surfactant Lutensol AT50 which leads to less 

aggregation after dye coupling and throughout DLS measurements. 

To ensure that the fluorescent properties of the dye are not altered by the coupling and 

washing procedures, the fluorescence spectra of the free dye carboxy SNARF-1 and of 

SNARF-1-NPs were measured in buffers with different pH values (pH 4.5 – pH 8.5, Table 10). 

Upon excitation, the protonated form (HA) in acidic environment emits light at a lower 

wavelength than the deprotonated form (A-) in basic environment (Figure 45B). Thus the pH 

value can be calculated from the intensity ratio (HA/A-) of the two emission wavelengths of 

the protonated and deprotonated form.  

Figure 48 display the pH-dependent emission spectra of the free carboxy SNARF-1 dye (A) 

and of the SNARF-1-NHS ester coupled onto the particle surface (B, SNARF-1-NP)). Figure 48 

show the ratios of the protonated (HA) and deprotonated (A-) emission maxima of the free 

dye (SNARF-1, C) and SNARF-1-NP (D) obtained by integrating the spectra over a fixed 

wavelength.  
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Table 10 Potassium rich and carbonate-free buffer systems for pH calibration (specification 
for 500 mL demineralized water. 

pH KCl 

/ g 

FCS1) 

/ g 

MgCl2 · 6 

H2O / g 

HEPES2)  

/ g 

MES3) 

/ g 

Bicine 

/ g 

Citric acid · 

1 H2O / g 

Na2HPO4 · 2 

H2O / g 

4.6 4.8 5.0 - - - - 5.6 8.2 

5.0 4.8 5.0 - - - - 5,1 9.1 

5.5 4.8 5.0 0.2 - 3.0 - - - 

5.75 4.8 5.0 0.2 - 3.0 - - - 

6.0 4.8 5.0 0.2 - 3.0 - - - 

6.4 4.8 5.0 0.2 - 3.0 - - - 

6.6 4.8 5.0 0.2 - 3.0 - - - 

6.8 4.8 5.0 0.2 - 3.0 - - - 

7.2 4.8 5.0 0.2 3.6 - - - - 

8.0 4.8 5.0 0.2 - - 2.4 - - 

1) Fetal calf serum (FCS), 2) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 3) 2-

N-morpholino) ethanesulfonic acid (MES). 

 

The ratios (HA/A-) of both free dye and dye-coupled nanoparticle conjugates are equal and 

linear in the range from pH 6.8 to pH 8.0. However, the emission of the free dye differs from 

the NP-coupled dye for pH values below pH = 6.8. Possible reasons can be the repulsion of 

H+ ions from the positively charged particle surface lowering the local pH as has been shown 

in more detail by others groups.[191] Förster resonance energy transfer (FRET) may also occur 

between protonated and deprotonated SNARF-1 on the NP surface. The average distance 

between the dye molecules after coupling onto the nanoparticle surface is lowered to the 

nanometer scale which may allow energy transfer between the protonated und the 

deprotonated form to occur. 

Furthermore, the photo-physical properties of SNARF-1 may be altered through the 

presence of cellular components.[192] Nevertheless, it can be concluded that carboxy SNARF-

1 still preserved its pH responsiveness after the coupling process. 
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Figure 48 Fluorescence emission spectra of (A) carboxy SNARF-1 dye and (B) SNARF-1-NPs at 
different pH values, λex = 514 nm, (C, D) ratios of emission integrals obtained from 
fluorescence spectroscopy of protonated (λem, HA = 550 – 610 nm) and deprotonated  
(λem, A- = 640 – 720 nm) emission range for the (C) SNARF-1 dye and (D) SNARF-1-NPs 
(λex = 514 nm).[187] 

 

6.4.3. Intracellular pH calibration 

An intracellular pH calibration was performed by Dr. Sandra Ritz with the CLSM cell imaging, 

because the fluorescent properties of carboxy SNARF-1 can be altered in the presence of 

proteins or other cellular components. [192] Therefore, HeLa cells were loaded with  

SNARF-1 acetoxymethyl acetate ester (SNARF-1-AM) or SNARF-1-NPs and treated with 

buffers of different pH values (Table 10). The (AM) esters of the fluorescent dye SNARF-1 

(Figure 45C) are typically non-fluorescent because the extent of the delocalization in the 

aromatic structure is reduced by esterifying the naphthol hydroxyl group. The AM ester is 

hydrophobic and therefore able to cross the cell membrane. Once the molecule is inside the 

cytoplasm, the ester bond is cleaved by unspecific esterases. The polar free form of the dye 

is no longer able to cross the membrane barrier and trapped inside the cell. The extra- and 

intracellular pH values were equilibrated with the ionophores nigericin and valinomycin,[193, 
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194] which drive the cell membrane to be permeable to H+/K+. However, it is reported that 

the intracellular pH does not fully adjust to the extracellular pH values in nigericin containing 

high K+ saline buffer, but deviates by -0.12 ± 0.02, [195] which must be considered as an 

additional calibration error. The intracellular pH was found to be stable after the addition of 

ionophores within approximately 100 s. To prevent severe toxic effects of the ionophores to 

the cells, which may lead to the cell membrane rupture and release of the trapped dye into 

the medium, measurements were performed within 5 min after the addition of ionophores 

and stabilization of the intracellular pH. A positive control of dye-loaded cells provided an 

intracellular pH of approximately pH = 7.2, which is consistent with the previously published 

values for HeLa cells.[196] 

 

Figure 49 Intracellular calibrations for SNARF-1-AM and SNARF-1-NPs by fluorescence 
confocal laser scanning microscopy (CLSM) in HeLa cells. A) Representative pseudo-colored 
pH ratio images of the free SNARF-1-AM ester in the cytosol (scale bars 50 µm), (B) SNARF-1-
NPs located in vesicular structures (scale bars 5 µm), (C, D) intracellular ratios of emission 
integrals obtained from CLSM imaging of protonated (λem, HA = 550 - 610 nm) and 
deprotonated (λem, A- = 640 – 750 nm) emission range for the (C) SNARF-1-AM ester and for 
(D) SNARF-1-NP conjugates (λex = 514 nm).[187] 
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The free SNARF-1-AM ester was found to be homogeneously distributed in the cytoplasm of 

the cells (Figure 49A), whereas the SNARF-1-NPs were exclusively located in vesicular 

structures (Figure 49B). The pH dependent emission ratios (HA/A-) of the free SNARF-1-AM 

ester and SNARF-1-NPs were plotted in Figure 49C and Figure 49D. The calibration values of 

SNARF-1-NPs were fitted by a polynomial fit (Figure 49D), and the resulting equation was 

used to calibrate all further images. The intracellular calibration and the derived polynomial 

fit function allowed the detection of pH-dependent emission of SNARF-1-NPs in the range of 

pH 5.0 to pH 8.0. As this detectable pH range lies well in the range of pH changes seen both 

in the extracellular milieu and endo/lysosomal compartments, SNARF-1-NPs were 

considered to be an ideal sensor for acidification of NPs after endocytotic uptake into cells. 

Further, the particles were found to be non-toxic for the cells as evaluated by a cell viability 

test. 

 

6.4.4. Localization and Acidification of pH-Responsive 

Nanoparticles in Cells 

The time-dependent nanoparticle localization in living cells and their normal pH environment 

was monitored by applying the calibration fit function to CLSM images acquired after 

different incubation times (Figure 50) and measured by Dr. S. Ritz. Pseudo-colored CLSM 

images show the pH values of the particles in vesicular compartments of HeLa cells 

incubated with SNARF-1-NPs for 1, 2, 4, 6, 8 and 24 h (Figure 50A). 30 to 60 min after cellular 

uptake, an acidification of the NP environment was detected by quantifying the local pH with 

a maximal pH distribution of pH 5.8 ± 0.2, which is in a typical range for early endosomes  

( pH 6).[197, 198] After 30 min the signal intensity was high enough for reliable detection. 

At first, only few SNARF-1-NPs loaded compartments were observed (1 h); with increasing 

time, the number and size of vesicular compartments increased until equilibrium is reached 

after 4 - 6 h. For early time points (1 - 2 h) 'blue spots' (pH ≥ 7.4) confirmed the location of 

the SNARF-1-NPs on the exterior of the cell. Intracellular vesicular compartments with green, 

yellow and red pseudo-color have an acidic pH between pH 5.5 – 7.0, respectively, and are 

supposed to be endo/lysosomal structures. 
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Figure 50 Time-dependent nanoparticle uptake and pH measurements with SNARF-1-NPs by 
fluorescence live cell CLSM in HeLa cells imaged after the indicated time points 
(λex = 514 nm, λem, HA = 550 – 610 nm, λem, A- = 640 – 750 nm). (A) Representative pseudo-
colored pH ratio images of SNARF-1-NPs located in vesicular compartments (bar scales 10 
µm), (B) representative pH distribution in intracellular vesicular compartments calculated 
from one ratio image (ca. 5 cells) per time point, (C) time-dependent pH measurements of 
SNARF-1-NPs uptake. Mean value and standard deviation calculated from pH mean values 
from at least 10 ratio images per time point applying the calibration polynomial fit 
function.[187] 

 

According to this, quantitative analysis of the pseudo-colored vesicular structures revealed a 

bimodal pH distribution with maxima around pH 6.8 and pH  6.0 for early time points 

(5.8 ± 0.2, 1 - 2 h), which progressed to an equilibrium of pH 5.2 ± 0.2 after 4 - 6 h (Figure 

50B, C). This pH equilibrium was constant for 48 h. The time course of the gradual 

acidification was plotted in Figure 50C. The data represent the mean value of 10 images per 

time point comprising roughly 5 cells per image and all vesicular structures in these cells. 

TEM imaging done by C. Messerschmidt supported the endo/lysosomal localization of 

SNARF-1-NPs by displaying a distinct phospholipid layer around the particles which was 
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positively stained with osmium tetroxide. Such a phospholipid or protein corona respectively 

is subsequently formed by biomolecules upon contact with biological fluids (cell culture 

medium, blood) as well as the targeted cell type. Cluster of nanoparticles seen in the TEM 

images indicated that the fluorescence signals in the CLSM images occurred mostly from 

more than one nanoparticle. Electron micrographs visualized the SNARF-1-NPs uptake by c-

shaped membrane ruffles typical for a macropinocytosis driven mechanism (Figure 51A). 

After 1 h, single SNARF-1-NPs or packages of ≤ 5 NPs surrounded by phospholipids were 

localized in the cytoplasm close to the plasma membrane (Figure 51B). Simultaneously, 

particle packages (5 – 10 NPs) were located in perinuclear regions (Figure 51C).  

 

Figure 51 Transmission electron microscopy (TEM) images taken by C. Messerschmidt of 
SNARF-1-NP uptake in HeLa cells. HeLa cells were loaded with SNARF-1-NPs (0.3 g∙L-1) and 
prepared for TEM imaging after 1 h and 3 h incubation time, MVBs (multi vesicular bodies), 
bar scales 300 nm.[187] 

After 3 h, nanoparticles were identified in endosomal/lysosomal vesicles and densely filled 

multivesicular bodies (> 10 NPs) (Figure 51D). This suggests a fusion of vesicular 

compartments containing NPs during the ripening process and an increased number of 

particles in clusters with increasing incubation time. 

The proposed acidification processes of SNARF-1-NPs in HeLa cells was also supported by co-

localization studies with fluorescent GFP-labeled endo/lysosomal Rab family proteins and 

live cell imaging. The Rab family of small GTPases is a major protein family regulating 
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intracellular trafficking and fusion of endosomal structures. Live cell imaging was performed 

with HeLa cells that were transiently transfected with the fluorescent Rab proteins 4a, 5a, 7 

and 9, before supplying SNARF-1-NPs. Representative fluorescence images are shown in 

Figure 52 and Figure 53A. Rab4a is present in early endosomes and regulates recycling to the 

plasma membrane.[196] Rab5a is a marker for vesicle trafficking from the plasma membrane 

to early endosomes and homotypic fusion of early endosomes.[199] Rab7 accompanies 

transport from early endosomes via multivesicular bodies to late endosomes/lysosomes.[200] 

Rab9 is a marker for cycling between late endosomes and trans-Golgi network.[201]  

 

Figure 52 Exemplary images of co-localization between SNARF-1-NPs with GFP-Rab9 after 
uptake in HeLa cells (1 h). CLSM images (scale bar 10 µm) of single channels (GFP-Rab9, 
green, SNARF-1-NP, red) were semi-automatically filtered to select the vesicular structures 
and nanoparticles, and converted into binary masks displaying selected black objects on a 
white background. The binary masks were multiplied with each other to create a result mask 
displaying the NPs in vesicular structures. Rab9 is a marker for late endosomes and 
lysosomes.[187] 

Quantitative image analysis revealed that after 1 h of incubation with nanoparticles, most of 

the SNARF-1-NPs were on the way from early to late endosomes and lysosomes indicated by 

co-localization with EGFP-Rab7 (70% ± 9.5%) and EGFP-Rab 9 (62% ± 18%) stained structures. 

Less particles are on the route from the plasma-membrane to early endosomes (co-

localization with EGFP-Rab5a (14% ± 3%)) or on the way backwards to the plasma-

membrane in recycling endosomes (co-localization with EGFP-Rab4a (6% ± 1%)) which can 

be seen in Figure 53A and B. Similar trends for intracellular co-locations with Rab family 

members were recently observed by Sandin et al. [202] Before endocytosis, the majority of 

surface bound carboxy SNARF-1 was deprotonated. During maturation from early to late 
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endosomes and lysosomes, the ratio of protonated to deprotonated SNARF-1-NPs increased 

with the decrease of the pH, which is caused by the vacuolar type of H+-ATPases (V-

ATPases).[203] 

 

 

Figure 53 Co-localization of SNARF-1-NPs with endo/lysosomal marker proteins inside HeLa 
cells (1 h), (A) fluorescence live cell images of HeLa cells expressing fluorescent-labeled 
proteins of the Rab small GTPase family (green), co-localized structures highlighted by a 
yellow circle, bar scales 10 µm, (B) quantitative analysis of SNARF-1-NPs co-localizing with 
the indicated Rab proteins after 1 h uptake in HeLa cells. Object based co-localization is 
expressed as percentage area of NP overlapping with endosomal marker protein in relation 
to all SNARF-1-NPs. Mean value and standard deviation calculated from 5 images per time 
point.[187] 

 

6.4.5. Conclusion and Outlook for Section 6.4 

Amine functionalized polystyrene nanoparticles with narrow size distribution were 

synthesized by soap-free emulsion polymerization and functionalized with the pH-responsive 

dual wavelength dye SNARF-1 by NHS ester mediated coupling reaction. The nanoparticles 

were characterized regarding their physico-chemical and optical properties proving that the 

dye molecules preserve their fluorescent properties as dual wavelength emitters even after 

coupling reaction. Such nanoparticle conjugated pH-sensors are potential tools for the 

monitoring of local pH changes in endo/lysosomal compartments what has also been shown. 

Their application will improve the understanding of basic cell-physiological processes, like 
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infection cycle of viruses or nanoparticle uptake and pH triggered drug release. Additionally, 

they may be applied for drug screening of pH affecting compounds like ionophores, or as 

diagnostic tool for pH affected diseases like cancer or Alzheimer.  

The presented concept of SNARF-1 coupled to amino-functionalized NPs could be further 

developed towards a multifunctional sensor NP, e.g. by coupling additional ion sensors. The 

fluorescent spectrum of SNARF-1 can easily be distinguished from the Ca2+ chelator 

acetyloxymethyl 2-[5-[bis-[2-(acetyloxymethoxy)-2-oxoethyl]amino]-4-[2-[2- [bis-[2-

(acetyloxymethoxy)-2-oxoethyl] amino]-5-methylphenoxy]ethoxy]-1-benzofuran-2-yl]-1, 3-

oxazole-5-carboxylate (fura-2 AM) or the Na+ ion chelator bis(acetyloxymethyl) 4-[6-[13-[2-

[2, 4-bis(acetyloxymethoxycarbonyl)phenyl]-5-methoxy-1-benzofuran-6-yl]-1, 4, 10-trioxa-7, 

13-diazacyclopentadec-7-yl]-5-methoxy-1-benzofuran-2-yl]benzene-1,3-dicarboxylate (SBFI-

AM), facilitating simultaneous measurement of H+, Ca2+ and Na+ ion concentrations in 

cells.[204] This study increases the understanding of cellular trafficking of nanoscale particles. 
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7. Experimental Section 

7.1. General Procedures 

7.1.1. Materials 

Styrene (Merck, Darmstadt, Germany) and acrylic acid (AA) were purified using a nitrogen 

pressured alumina flash column. All other chemicals were used without further purification: 

poly(sodium styrene sulfonate) (NaPSS, Sigma-Aldrich, St. Louis, USA), 2-aminoethyl 

methacrylate hydrochloride (AEMH, Sigma Aldrich, St. Louis, USA; 90%), 2,2'-azobis(2-(2-

imidazolin-2-yl)propane) dihydrochloride (VA-044), ammonium peroxodisulfate (Sigma 

Aldrich, St. Louis, USA), sodium dodecyl sulfate (SDS, Sigma Aldrich, St. Louis, USA) and 

ethanol (VWR International GmbH, Darmstadt, Germany). Demineralized and MilliQ water 

(resistivity 18.2 MΩ∙cm) were used throughout the experiments.  

 

7.1.2. Carboxyl and Sulfonate Functionalized 

Nanoparticles by Soap-Free Emulsion Polymerization 

Negatively charged carboxylated and sulfonated polystyrene colloids were prepared by 

soap-free emulsion copolymerization following a modified protocol from Goodwin.[21] 

MilliQwater was heated up to 80 °C in a three-necked round-bottom flask equipped with a 

reflux condenser and septa. Under continuous bubbling of argon the water was 

deoxygenated for 30 min. Styrene was added with a syringe and the mixture was stirred for 

10 min at  1000 min-1. The comonomer (AA or NaPSS) was dissolved in 5 mL of MilliQ water 

and added to the reaction mixture with a syringe. After further 5 min the initiator (APS), 

dissolved in 5 mL of water was also added to the mixture to initiate the emulsion 

polymerization process. The polymerization proceeded under argon atmosphere and 

continuous stirring at 700 min-1 for 24 h. The particle dispersion was dialyzed (MWCO 

14,000 g∙mol-1, Carl Roth, Karlsruhe, Germany) for 3 d under repeated exchange of 

demineralized water. The experimental details as well as the physico-chemical 

characterization of the resulting colloids after dialysis were listed in Table 11. 
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Table 11 Amounts and characteristics of colloids (dialyzed) prepared by surfactant free 
emulsion polymerization with carboxyl and sulfonate groups on the particle surface. 

sample 

(dialyzed) 

St  

/ g 

MilliQ  

/ mL 

APS  

/ mg 

AA  

/ mg 

NaPSS  

/ mg 

Rh  

/ nm 

σ  

/ % 

zeta- 

potential / mV 

KB111122 30.0 300 99.6 - 11 419 10.0 -57.8 ± 6.5 

KB111212 13.0 250 200.5 199.8 - 385 4.7 -49.2 ± 5.5 

KB120510A 1.7 125 200.4 201.6 - 186 4.3 -48.0 ± 6.9 

KB120510B 10 250 200.4 201.9 - 315 9.2 -53.6 ± 6.3 

KB120529 17 250 200.7 200.6 - 432 6.9 -57.4 ± 5.7 

G212 415 5000 1826 9587 - 1150 10.0 -67.6 ± 4.3 

 

7.1.3. Amine Functionalized Nanoparticles by Soap-Free 

Emulsion Polymerization 

Positively charged amine functionalized polystyrene colloids were synthesized by soap-free 

emulsion copolymerization following a modified protocol of Ganachaud et al.[189, 205] 

MilliQ water was heated up to 55 °C for 30 min under continuous bubbling of argon. Styrene 

was added with a syringe and stirred for 10 min at 1200 ∙min-1. After 5 min the comonomer 

(AEMH) dissolved in 2 mL MilliQ water was added with a syringe. After further 5 min the 

initiator (VA-044), dissolved in 3 mL MilliQ water was also added to initiate the 

polymerization process. The polymerization proceeded for 24 h at 55 °C under continuous 

stirring at 500 min-1 under argon atmosphere. After synthesis and cooling down, the 

dispersion was dialyzed (Table 12shows the experimental setup and the particle size 

determination for the amine functionalized colloids prepared by surfactant free emulsion 

polymerization. 
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Table 12 Amounts and characteristics of colloids with amine groups on the surface prepared 
by surfactant free emulsion copolymerization after thorough dialysis. 

sample 

(dialyzed) 

St  

/ mL 

MilliQ  

/ mL 

VA-044  

/ mg 

AEMH  

/ mg 

Rh  

/ nm 

σ  

/ % 

zeta- 

potential / mV 

KB120912A 11 125 284.4 500.0 150 14.7 46.3 ± 6.1 

KB120912B 5.5 125 284.4 250.0 67 14.9 43.5 ± 10.7 

KB120917A 15 200 284.4 341.3 89 13.5 38.8 ± 11.4 

KB130114A 15 200 284.4 409.5 92 15.2 43.9 ± 13.3 

KB130114B 15 200 284.4 682.5 135 15.6 45.0 ± 5.0 

 

7.1.4. Cleaning of Colloid Dispersions 

3 mL of the colloid dispersion was washed before further usage with an ethanol-water 

mixture (50 vol.%) and by centrifugation-redispersion cycles. Particles < 1 µm were 

centrifuged 35 min at 10,000∙min-1and particles > 1 µm 20min at 8,000∙min-1. Therefore, 

after centrifugation the supernatant was replaced with the same volume of an ethanol-

water mixture and redispersed by ultrasonication. After 3 cycles of centrifugation the 

supernatant was replaced with MilliQ water and the solid content was adjusted to 5.0 wt.% 

if not stated otherwise. 

7.1.5. Cleaning of Glass or Wafer Substrates 

The substrates were cleaned using a basic piranha-solution to remove any impurities and to 

decrease the contact angle to almost 0°. Therefore, the substrates were placed into a Färber 

box containing a solution of 10 mL 33% hydrogen peroxide solution, 10 mL 30% ammonia 

solution (NH4OH) and 50 mL MilliQ water (careful! Basic piranha solution is extremely 

corrosive!). The substrates were heated up to 75 °C for 45 min. After cooling down the 

substrates were thoroughly rinsed with MilliQ water and stored in ethanol until use. 
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7.1.6. Colloidal Monolayer Formation at the Langmuir-

Blodgett Trough 

The aqueous colloidal dispersion was diluted 1:2 with ethanol as spreading agent. For the 

self-assembly the dispersion was spread onto the water surface of the Langmuir trough (KSV 

NIMA, Biolin Scientific with a length of 364 cm and a width of 75 cm (total surface area 

273 cm²), using a partially immersed tilted glass slide as spreading help. The dispersion was 

added drop wise at the upper end of the glass slide to flow down slowly. This led to well-

ordered hexagonally densely packed monolayers. All other particle arrangements were 

prepared by direct applying the dispersion-ethanol mixture drop wise at the air-water 

interface of the Langmuir trough using a 100 µL Eppendorf pipette. The surface film was 

allowed for 10 min to equilibrate before compression to assure that the entire spreading 

agent was evaporated. The process can be followed by surface pressure detection using the 

Wilhelmy plate film balance of the Langmuir trough. When the ethanol was completely 

evaporated the surface pressure stays constant indicating the point where the colloidal 

monolayer at the interface can be compressed by the moveable barriers of the trough. The 

created monolayer can be transferred to the substrate lying in the subphase on a special 

holder by surface lowering transfer (Figure 9). Therefore, the subphase was removed after 

compression behind the barriers using a membrane pump (1 L∙h-1), whereupon the 

monolayer is settled smoothly onto the substrate. The monolayer covered substrate was 

dried under a shallow angle until all water has been evaporated. 

 

7.1.7. General Analytical Tools 

7.1.7.1. Dynamic Light Scattering and Photon Cross-

Correlation Spectroscopy 

The average hydrodynamic radius and the size distribution of the colloids was measured 

either by angle-dependent dynamic light scattering (ALV/CGS3 compact goniometer system 

with a He/Ne laser (632.8 nm)) at 20 °C or with photon cross-correlation spectroscopy 

(Nanophox, Sympatec GmbH, Clausthal-Zellerfeld, Germany). The final solid content of the 

colloid dispersion in MilliQ water was adjusted to 0.01 wt.% for the measurements. 
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7.1.7.2. Zeta-Potential Measurements 

The zeta-potential measurements were performed using a Nano Zetaziser (3000 HAS 

Malvern Instruments GmbH, Herrenberg, Germany). Colloid dispersions were diluted with 

KCl solution (1∙10-3 mol∙L-1) to a final solid content of approximately 0.01 wt.%. The 

dispersion was applied to a special capillary cell and measured in triplicate. The average 

value of the three measurements was used as final value for the zeta-potential. 

 

7.1.7.3. Particle Charge Detection 

The amount of functional groups on the particle surface was determined by titration against 

the opposite charged polyelectrolyte. Poly(diallyldimethyl ammonium chloride) (PDADMAC) 

was used as polyelectrolyte for the determination of carboxyl and sulfonate groups on the 

particles surface and polyelectrolyte sodium polyethylene sulfonate (PESNa) for the amine 

functionalized particles. The instrumental setup consisted of the particle charge detector 

(Mütek GmbH, Germany) in combination with a Titrino Automatic Titrator (Metrohm AG, 

Switzerland). For the measurements 10 mL of the colloid dispersion (0.1 wt.%) were titrated 

at least three times against the opposite charged polyelectrolyte. The average number of 

functional groups was calculated from the amount of consumed polyelectrolyte.[206] 

 

7.1.7.4. Fluorescamine Assay 

The amount of amine groups on the particle surface was also detected and calculated by 

fluorescence titration following the procedure published by Ganachaud et al.[188, 205] In brief, 

the calibration curve was plotted from hexylamine solutions of given concentrations in 

sodium borate buffer (pH = 9.5, 0.1 mol∙L-1) and freshly prepared fluorescamine solution in 

acetone (0.3 g∙L-1). 25 µL of the colloid dispersion with a solid content of 1.0 wt.% were 

added to 725 µL of borate buffer together with 250 µL of fluorescamine solution. After 30 s 

vigorous mixing, 100 µL of the dispersion were placed in a 96-well plate (Corning 

Incorporated 3603) and fluorescence emission of the fluorescamine at λem = 470 nm was 
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followed by a Tecan Infinite M1000 Plate Reader (Tecan Group Ltd., Maennedorf, 

Switzerland) using an excitation wavelength of λex = 410 nm.  

 

7.1.7.5. Differential Scanning Calorimetry and Thermal 

Gravimetric Analysis 

The colloid dispersion was dried before measurement by freeze-drying and 10-25 mg was 

placed in the crucible. Differential scanning calorimetry was measured using a DSC823e 

(Mettler Toledo, Gießen, Germany) following a heat protocol of 10 K∙min-1 under nitrogen 

atmosphere from 25 up to 300 °C. 

 

7.1.7.6. SEM Measurements 

All scanning electron micrographs were recorded using a Gemini 1530 microscope (Carl Zeiss 

AG, Oberkochen, Germany) at 0.3 kV. The samples from colloid dispersion after 

polymerization were prepared using a 0.01 wt.% colloid dispersion which is placed in the 

middle of a 5x5 mm² single side polished silicon wafer (Si-Mat, Kaufering, Germany). After 

evaporation of the water drop a thin layer of colloids is left on the wafer surface which was 

placed into the electron microscope. 

 

7.2. Experimental Details for Section 6.1 and 6.2 

7.2.1. Entrapment of Nanoparticles at the Air-Water 

Interface with Poly(butyl cyanoacrylate) 

To visualize nanoparticles directly at the air-water interface the interfacial polymerization 

with butyl cyanoacrylate (BCA) was used. For entrapping hexagonal arrangements a 100 mL 

dish was first filled with MilliQ water or 0.1 mM SDS solution and a pre-cleaned hydrophilic 

glass slide partially immersed into the subphase in a shallow angle of 45°. The diluted 

colloidal dispersion (2.5 wt.%, 50 vol.% ethanol) was applied to the air-water interface by the 
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glass slide until the surface was completely covered. Afterwards, the glass slide was removed 

carefully and BCA was heated up to 50 °C in an aluminum dish next to the monolayer 

containing dish. Both dishes were placed in a closed box, whereupon the polymerization of 

BCA was initiated by contact with the water surface. Depending on the duration and the 

amount of BCA addition by the gas phase, the thickness of the PBCA-composite film was 

adjusted. The composite films were carefully transferred onto a pre-cleaned substrate by 

vertically immersion into the water subphase and following slow lifting above the interface 

under a shallow angle into a horizontal position. After drying, the samples were examined by 

scanning electron microscopy. 

For the interfacial polymerization at the Langmuir trough a different experimental setup was 

necessary as can be seen in Figure 12. The colloidal monolayer was prepared as described 

earlier and compressed to the desired surface pressure. Then, the BCA placed in a pre-

heated (80 °C) aluminum dish covered with a funnel-tube-funnel system was evaporated. 

The temperature needs to be higher than for the entrapment in a BCA gas filled box as 

described earlier to guarantee the passage of the BCA gas from the pre-heated dish across 

the funnel-tube construction to the water interface of the trough. The composite film is 

transferred to the substrate by surface lowering transfer. Therefore, the subphase was 

removed behind the barriers using a membrane pump (1 L∙h-1). The composite film covered 

the substrate and after drying it was examined by electron microscopy. 

 

7.2.2. Preparation of Colloid-Copolymer Mixtures 

For the preparation of non-hexagonally closed packed colloidal monolayers a mixture of 

colloids with the block-copolymer PAAx-b-PMMAy 
[155, 156] with varying concentrations, block 

lengths (x, y) and molecular weight were used. Prior use, the block-copolymer was dissolved 

in water with 1eq. of 1M NaOH (c = 10 mg∙mL-1) at 70 °C and neutralized with 1M HCl using a 

pH-meter. The block-copolymer solution was added to the pre-cleaned particle dispersion 

and mixed for 30 s. For application on the Langmuir trough the mixture was diluted with 

ethanol (50 vol.%) and spread at the air-water interface. 
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7.2.3. Analytical Tools for Section 6.1 and 6.2 

7.2.3.1. Colloidal Probe AFM 

For comparison, particle contact angles were measured using an atomic force microscope 

(AFM). Polystyrene particles were glued to tipless AFM cantilevers (Mikromasch NSC12) 

using a two-component, room temperature curing epoxy (Uhu Endfest 300). Using an AFM 

(JPK Nanowizard), the particles were brought into contact with the air-liquid interface of an 

air bubble (~0.5 µL in volume) in a polystyrene petri dish filled with distilled, deionized 

water, and then pulled away. Both the position of the cantilever and its deflection were 

recorded during the measurement. The force on the cantilever over the course of the 

measurement was determined from the deflection using the cantilever spring constant, 

which was measured using the thermal noise method with a Dimension 3100 AFM. The 

position of the particle was determined by subtracting the deflection of the cantilever from 

its position. The particle contact angles were determined from plots of the force on the 

particle against the particle position. The receding particle contact angle were determined 

based on the distance d between the point where the particle makes contact with the 

interface and the point where the particle is at its equilibrium position with respect to the 

interface as the particle comes into contact with the bubble. Advancing contact angles were 

determined similarly, using the equilibrium position as the particle was withdrawn from the 

bubble.  

 

7.2.4. Optical Determination of the contact angle 

From scanning electron micrographs, the top view diameters of the visible parts of the 

colloids were evaluated using the program ImageJ. At least 100 objects were used for the 

analysis. 
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7.3. Experimental Details for Section 6.3 

7.3.1. Materials 

Styrene (Merck, Darmstadt, Germany), acrylic acid (AA, Sigma-Aldrich, St. Louis, USA) and 

butyl acrylate (BA, Sigma-Aldrich, St. Louis, USA) were purified using a nitrogen pressured 

alumina flash column. All other chemicals were used without further purification: 2,2'-

azobis(2-methylbutyronitrile) (V59, Wako Chemicals, Neuss, Germany), cis-1,2-dicyano-1,2-

bis-(2,4,5-trimethyl-3-thienyl) ethene (CMTE, TCI Europe), N-(2,6-diisopropylphenyl)-

perylene-3,4-dicarboximid) (PMI, a donation from BASF, Ludwigshafen, Germany), ethanol 

(VWR International GmbH, Darmstadt, Germany), purchased from Sigma Aldrich (St. Louis, 

USA): ammonium peroxodisulfate (APS), hexadecane, and sodium dodecyl sulfate (SDS). 

Demineralized and MilliQ water (resistivity 18.2 MΩ∙cm) were used throughout the 

experiments. 

 

7.3.2. Photoswitchable Nanoparticles by Miniemulsion 

Polymerization 

The photoswitchable dye-labeled particles were synthesized following the standard recipe 

for a direct miniemulsion polymerization. 

6 g of the monomer (styrene (St) or butyl acrylate (BA)) were mixed with 250 mg of 

hexadecane (HD), 100 mg of the initiator (V59) and varying amounts of the photoswitchable 

dye CMTE and the fluorescent dye PMI. After complete dissolution of the dyes the monomer 

mixture was added to a solution of 100 mg sodium dodecyl sulfate (SDS) dissolved in 24 g of 

MilliQ water and stirred at 900 rpm for 1 h. The typical miniemulsion was created by 

ultrasonication (Branson digital sonifier 450-D, Dietzenbach, Germany) of the pre-emulsion 

under ice-cooling with a ½” tip, 90% amplitude following a 10 s-pulse-10 s-pause protocol for 

2 min. Afterwards, the mixture was transferred into a round bottom flask and heated up to 

72 °C under gentle stirring for 24 h. After polymerization the particle dispersion was dialyzed 

(Table 13shows the experimental setup and the particle size characterization for the colloids 

prepared by miniemulsion polymerization. 
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Table 13 Amounts and characteristics of colloids (dialyzed) prepared by miniemulsion 
polymerization. 

sample 

(dialyzed) 

St 

/ g 

BA 

/ g 

HD 

/ mg 

PMI 

/ mg 

CMTE 

/ mg 

V59 

/ mg 

SDS 

/ mg 

MilliQ 

/ g 

Rh 

/nm 

σ 

/% 

KB111213A 6.0 - 257.1 2.6 25.4 100.0 100,1 24.0 90 15.6 

KB111213B - 6.0 253.7 2.3 25.4 100.1 100,4 24.0 156 12.8 

KB111213C 6.0 - 253.5 2.0 50.6 99.7 100,3 24.0 96 16.7 

KB111213D - 6.0 251.8 2.3 50.0 99.8 100,3 24.0 165 18.2 

KB120521A 6.0  250.4 4.1 50.7 100.6 100.3 24.0 131 21 

KB120521B - 6.0 251.3 4.3 50.3 100.1 100.4 24.0 120 25 

 

7.3.3. Photoswitchable Nanoparticles by Seeded Emulsion 

Polymerization 

A dispersion of 100 mL MilliQ water containing 0.1 wt.% of seed particles (dialyzed, 

photoswitchable polystyrene or poly(butyl acrylate) colloids from miniemulsion 

polymerization) and 0.01 wt.% of SDS was heated up to 75 °C under continuous stirring in a 

three necked round bottom flask equipped with a condenser and septa. Argon gas was 

bubbled through the dispersion for 30 min. 500 mg of the initiator ammonium 

peroxodisulfate (APS) were dissolved in 3 mL water and added by a syringe to the stirred 

dispersion. Furthermore, 2 g of styrene and 150 mg of acrylic acid were mixed and added 

with a syringe pump at a flow rate of 1 mL∙h-1 to the stirring dispersion. The reaction was 

polymerized at 80 °C for 24 h under argon atmosphere. The dispersion was dialyzed 

(membranes with MWCO 14,000 g∙mol-1, Carl Roth, Karlsruhe, Germany) for 3 d under 

repetitive exchange of the demineralized water. 
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Table 14 Amounts and characteristics of colloids (dialyzed) prepared by seeded emulsion 
polymerization. 

sample 

(dialyzed) 

Seed 

dispersion 

styrene 

/ mL 

APS 

/ mg 

SDS 

/ mg 

MilliQ 

/ mL 

AA 

/ mg 

Rh 

/ nm 

σ 

/ % 

KB120201B KB111213Adial 

0.33 g 

2.8 250.7 5.6 50 - 321 15.0 

KB120201C KB111213Bdial 

0.28 g 

0.8 250.0 5.2 50 - 286 12.9 

KB120201D KB111213Cdial 

0.30 g 

2.2 250.3 5.3 50 - 316 17.4 

KB120201E KB111213Ddial 

0.30 g 

0.9 250.7 5.0 50 - 316 11.6 

KB120309A KB111213Adial 

0.33 g 

4.0 249.9 5.0 50 250 333 13.8 

KB120309B KB111213Bdial 

0.28 g 

0.6 250.9 4.9 50 250 158 16.0 

KB120621A KB120521Adial 

0.58 g 

2.2 501.5 10.1 100 151.3 191 8.9 

KB120612B KB120521Bdial 

0.69 g 

2.2 501.5 10.1 100 150.0 260 11.9 

 

7.3.4. Creation of Binary Photoswitchable Colloidal 

Monolayers 

For the preparation of photoswitchable binary colloidal monolayers the co-assembly method 

of colloids at the air-water interface of a Langmuir trough was used. Prior use, the colloid 

dispersions were prepared as described under chapter 7.1.4. Here, two dispersions 

containing colloids of different sizes and functionalities were mixed in a distinct number 

ratio of large to small (Nlarge/Nsmall such as 1/6) particles and diluted with 50 vol.% ethanol as 

spreading agent. The larger non-fluorescent particles (1150 nm, 14.3 wt.%) were used as a 

template for the smaller photoswitchable particles (190 nm, 1.1 wt.%) prepared by seeded 

emulsion polymerization. After compressing (vcomp = 20 mm∙min-1) the air-water interface 

the binary colloidal monolayer was transferred to a silicon wafer and investigated with a 

scanning electron Gemini 1530 microscope (Carl Zeiss AG, Oberkochen, Germany). 

 



 

123 
 

7.3.5. Irradiation of the Photoswitchable Dye CMTE in 

Solutions and Colloids 

For the irradiation experiments and investigation of the photo-states of the photo-

responsive dye CMTE a mercury short arc lamp (HBO 100 W/2, 100 W, Osram) was used. The 

wavelength was adjusted with different optical band filters. For UV-irradiation a dark violet 

band pass (UG 1, Schott, 270-430 nm) and for VIS-light irradiation a combination of a light 

blue broad band (BG39, Schott) and a yellow optical filter (OG515, Schott) were used, 

transmitting light within a wavelength range of 515 to 690 nm. Either dye solutions or colloid 

dispersions were placed in front of the mercury short arc lamp under continuous stirring and 

irradiated with the wavelength range that is needed for distinct photo-states of the 

photochromic dye (CMTE). 

 

7.3.6. Analytical Tools for Section 6.3 

7.3.6.1. UV-VIS Spectroscopy 

Absorption spectra of the photochromic dye (CMTE) in solution were measured using a 

Perkin Elmer Lambda 25 UV-VIS spectrometer. 3 mL of a solution of the photochromic dye in 

the corresponding monomer (styrene or BA) with a concentration of c = 1∙10-6 mol∙L-1 were 

analysed within a wavelength range between 300 – 800 nm.  

 

7.3.6.2. Fluorescence Emission Spectroscopy 

Fluorescence emission spectra were recorded on a TIDAS 3D fluorescence spectrometer with 

an excitation wavelength of λex = 490 nm. For the measurements 3 mL of a fluorescent dye 

solution (PMI, c = 5.2∙10-6 mol∙L-1) in monomer (styrene and butyl acrylate) were used. 

Dispersions of photoswitchable nanoparticles (solid content of 1.5 wt.%) from miniemulsion 

as well as from seeded emulsion polymerization were also investigated. 
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7.3.6.3. Confocal Laser Scanning Microscopy 

Photoswitchable binary colloidal monolayers from large plain template particles (1150 nm) 

and photoswitchable smaller particles (190 nm) were investigated after co-assembly and 

compression at the air-water interface of a Langmuir trough. After transfer to a microscopy 

glass substrate the monolayer was imaged using a TCS SP5 (Leica) with a tunable argon laser 

at λex = 488 nm.  

 

7.3.6.4. Fluorescence Microscopy 

For the photoswitching of the functional colloidal monolayers an optical wide field 

fluorescence microscope (Olympus IX81, inverted fluorescence microscope, Hamburg, 

Germany) with 2.5x objective (UIS2), 100 W halogen lamp and different filters, such as a 

DAPI filter (UMNU 2, λex = 360 nm and λem = 420 nm) for the UV-light irradiation and a eGFP 

filter (U-MF2, λex = 472 nm and λem = 520 nm) for the VIS-light irradiation were used. The 

sample was alternately irradiated for 5 min with either UV or VIS-light and images were 

taken using the eGFP filter for the excitation of PMI. 

 

7.4. Experimental Details for Section 6.4 

7.4.1. Materials 

For the preparation of pH nano-sensors the following chemicals were used: the pH-sensitive 

dye 5´ (and 6´) carboxy-10-dimethylamino-3-hydroxy-spiro[7H-benzo[c]xanthene-7,1´(3´H)-

isobenzo-furan]-3´-one (carboxy SNARF-1), SNARF-1 acetate succinimidyl ester (SNARF-1-

NHS), SNARF-1 acetoxymethyl ester acetate (SNARF AM ester); all Invitrogen, Karlsruhe, 

Germany, dimethyl sulfoxide (DMSO, Merck, Darmstadt, Germany), fluorescamine (Sigma 

Aldrich, St. Louis, USA; >98%), sodium borate (Merck, Darmstadt, Germany), hexylamine 

(Sigma Aldrich, St. Louis, USA; 99%), Hank´s Balanced Salt Solution (HBSS, Life Technologies 

GmbH, Darmstadt, Germany), Dulbecco´s Modified Eagle Medium (DMEM Gibco®, Life 

Technologies GmbH, Darmstadt, Germany), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES), 2-(N-morpholino)ethane sulfonic acid (MES) and fetal calf serum (FCS, Gibco®, 
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Life Technologies GmbH, Darmstadt, Germany). Demineralized and MilliQ water (resistivity 

18.2 MΩ∙cm) were used throughout the experiments. 

 

7.4.2. Preparation of SNARF-Labeled Nanoparticles 

Amino functionalized colloidal particles (KB130114B, dialyzed) were used for the preparation 

of SNARF-labeled nano-particular pH sensors (Table 9).  

The pH-sensitive dye SNARF-1-NHS was coupled onto amino-functionalized polystyrene 

colloids forming an amide bond between the amine group of the nanoparticle and the 

carboxylic acid function of the dye. 0.11 mg of SNARF-1-NHS dissolved in 440 µL dimethyl 

sulfoxide (DMSO) (c = 0.25 mg∙mL-1) were added to a dispersion of amino-functionalized 

colloids with a solid content of 0.4 wt.% and stirred for 24 h. An excess of 3000× of SNARF-1-

NHS with regard to the total amount of determined surface amine groups was used. After 

coupling and prior use for further experiments, the colloids were purified by dialysis (MWCO 

14,000 g∙mol-1, Carl Roth, Karlsruhe, Germany) under repetitive exchange of demineralized 

water for 3 d and then washed with MilliQ water via repetitive centrifugation/redispersion in 

the same amount of water at 22,000 min-1 for 45 min until no fluorescence intensity was 

detected in the supernatant. 

 

7.4.3. Probing of Nanoparticle pH Environment in HeLa 

Cells 

HeLa cells were incubated in DMEM with 10% fetal calf serum (FCS), 100 units·mL-1 penicillin 

and 100 µg·mL-1 streptomycin in a humidified incubator at 37 °C and 5% carbondioxide 

(CO2). For confocal laser scanning microscopy (CLSM), cells were seeded at a concentration 

of 1.5 · 104 cells∙cm-2 and grown on 8-well cover glass Lab-Teks (Nunc, Langenselbold, 

Germany). 
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7.4.4. Intracellular calibration with SNARF-1-AM Ester and 

SNARF-1-NP 

The pH-responsive SNARF dye was calibrated in cells with SNARF-1-AM ester and SNARF-1-

NPs. Before imaging cells were allowed to grow for 24 h on 8-well cover glass Lab-Teks.  

SNARF-1 AM ester (0.5 µg), dissolved in 1 µl DMSO (0.5 g∙L-1), was incubated with 10 µl of 

FCS for 5 min to improve the water solubility and loading efficiency. Before loading the HeLa 

cells with SNARF-1 AM ester, the cells were washed with Hank´s Balanced Salt Solution 

buffer (HBSS, Life Technologies GmbH, Darmstadt, Germany), then the mixture was added to 

the cells together with 500 µl HBSS buffer. The cleavage of the dye by esterases was 

performed in a humidified incubator at 37 °C and 5% CO2 for 30 min. After dye loading, the 

HBSS buffer was replaced by a buffer with the desired pH value (Table 10). Alternatively, for 

calibration measurements with dye-NP conjugates, cells were loaded with 0.075 g∙L-1 of 

SNARF-1-NP for 24 h, then washed and measured in 500 µl buffer with the different pH value 

(Table 10). All buffers used were potassium rich and carbonate-free to ensure good pH 

equilibration by K+ ionophores and long-time pH stability in the presence of air, respectively. 

The pH equilibration was performed by adding the ionophores nigericin (5 µg) and 

valinomycin (2.5 µg), dissolved in 7.5 µL DMSO to the 500 µL HBSS buffer. The ionophores 

were added to the cells immediately before the measurements and measured within 5 min. 

Buffers were used for intracellular calibration. Buffer chemicals were solved in 500 mL 

demineralized water. After pH adjustment with 0.1 M hydrochloric acid (HCl) or sodium 

hydroxide (NaOH), they were sterile filtered and stored at 4 °C. 

 

7.4.5. Analytical Tools for Section 6.4 

7.4.5.1. Fluorescence Emission Spectroscopy 

Fluorescence emission spectra of the free carboxy SNARF-1-dye and SNARF-1-NPs 

(c = 100 µg∙mL-1) were recorded using an excitation wavelength of λex = 514 nm at different 

pH values to evaluate dye functionality after NP coupling with the M1000 plate reader 

(Tecan Group Ltd., Maennedorf, Switzerland), gain 200 and bandwidth 5 nm. A solution of 

the dye carboxy SNARF-1 (c = 0.5 µg∙mL-1) was diluted with buffer solutions of varying pH to 
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obtain a final concentration of (c = 1 µg∙mL-1). The colloids with coupled SNARF dye were 

also diluted to result a final concentration of SNARF-1-NPs (c = 100 µg∙mL-1). Further, 200 µL 

of the corresponding solution or dispersion were placed in black clear-bottom polystyrene 

96-well plates (Corning Inc., New York, USA). The fluorescence emission spectra were 

measured twice and the average values of the wavelength dependent fluorescence emission 

of both measurements were used to obtain the final emission spectra. 

 

7.4.5.2. Confocal Laser Scanning Microscopy 

CLSM measurements were performed using a TCS SP5 (Leica), a 100× oil plan apochromat 

objective (1.4 numerical aperture), and a tunable argon laser with λex = 514 nm. Emission 

range was set to λem = 550 - 610 nm and λem = 640 - 750 nm. Signals were detected by 

photomultipliers with fixed gain values. For calibration, 5-10 images were collected per pH 

value and the mean intensity of the cytosol (SNARF-AM ester) or vesicular structures 

(SNARF-1-NPs) was quantified. Care was taken that the ratios of the fluorescence intensities 

of the protonated and deprotonated form of SNARF-1 (Figure 45) were acquired with the 

same instrumental setup and settings in all experiments.  

 

7.4.5.3. TEM Measurements 

Transmission electron microscopy on HeLa cells treated one and three hours of incubation 

time with 300 µg.mL-1 of SNARF-1-NPs was used to visualize SNARF-1-NPs at high resolution 

in their cellular environment. Before treatment, cells were cultured for 48 h after seeding 

onto 3 mm Ø sapphire discs at a density of 30.000 cells·cm-2 in a 24-well plate. At the end of 

the incubation period, cells were fixed by means of high pressure freezing using a Compact 

01 HPF machine (Wohlwend GmbH, Switzerland). Subsequent freeze-substitution was 

conducted using a Leica EM AFS 2 device (Leica Microsystems, Germany). The substitution 

medium contained acetone p.a., 0.2% osmium tetroxide, 0.1% uranyl acetate and 5% water. 

The mixture was pre-cooled to -90°C before the samples were added. After freeze-

substitution, the samples were washed twice with acetone p.a. and finally embedded into 
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EPON 812 resin. Ultrathin sectioning of the embedded samples was performed using a Leica 

Ultracut UCT (Leica Microsystems, Germany) equipped with a diamond knife. 

Examination of thin sections was conducted using a FEI Tecnai F20 transmission electron 

microscope (FEI, USA) operated at an acceleration voltage of 200 kV. Bright field images 

were acquired using a Gatan US1000 slow scan CCD camera (Gatan Inc., USA). 

  



 

129 
 

8. Bibliography 

1. Pieranski, P., TWO-DIMENSIONAL INTERFACIAL COLLOIDAL CRYSTALS. Physical 
Review Letters, 1980. 45(7): p. 569-572. 

2. Retsch, M., et al., Template-free structuring of colloidal hetero-monolayers by inkjet 
printing and particle floating. Soft Matter, 2010. 6(11): p. 2403-2412. 

3. Vogel, N., et al., Laterally Patterned Ultraflat Surfaces. Small, 2009. 5(7): p. 821-825. 

4. Galisteo-Lopez, J.F., et al., Self-Assembled Photonic Structures. Advanced Materials, 
2011. 23(1): p. 30-69. 

5. Hulteen, J.C., et al., Nanosphere lithography: Size-tunable silver nanoparticle and 
surface cluster arrays. Journal of Physical Chemistry B, 1999. 103(19): p. 3854-3863. 

6. Hulteen, J.C. and R.P. Van Duyne, Nanosphere lithography: A materials general 
fabrication process for periodic particle array surfaces. Journal of Vacuum Science 
&amp; Technology A, 1995. 13(3): p. 1553-1558. 

7. Haes, A.J., et al., Nanoscale optical biosensor: Short range distance dependence of the 
localized surface plasmon resonance of noble metal nanoparticles. Journal of Physical 
Chemistry B, 2004. 108(22): p. 6961-6968. 

8. Haes, A.J., et al., A nanoscale optical biosensor: The long range distance dependence 
of the localized surface plasmon resonance of noble metal nanoparticles. Journal of 
Physical Chemistry B, 2004. 108(1): p. 109-116. 

9. Fischer, J., et al., Near-Field-Mediated Enhancement of Two-Photon-Induced 
Fluorescence on Plasmonic Nanostructures. Journal of Physical Chemistry C, 2010. 
114(49): p. 20968-20973. 

10. Camden, J.P., et al., Controlled Plasmonic Nanostructures for Surface-Enhanced 
Spectroscopy and Sensing. Accounts of Chemical Research, 2008. 41(12): p. 1653-
1661. 

11. Bianchi, E., R. Blaak, and C.N. Likos, Patchy colloids: state of the art and perspectives. 
Physical Chemistry Chemical Physics, 2011. 13(14): p. 6397-6410. 

12. Groschel, A.H., et al., Guided hierarchical co-assembly of soft patchy nanoparticles. 
Nature, 2013. 503(7475): p. 247-251. 

13. Jensen, T.R., G.C. Schatz, and R.P. Van Duyne, Nanosphere lithography: Surface 
plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-
visible extinction spectroscopy and electrodynamic modeling. Journal of Physical 
Chemistry B, 1999. 103(13): p. 2394-2401. 

14. Derjaguin, B., A theory of interaction of particles in presence of electric double layers 
and the stability of lyophobe colloids and disperse systems. Acta Physicochimica Urss, 
1939. 10(3): p. 333-346. 



 

130 
 

15. Derjaguin, B. and L. Landau, THEORY OF THE STABILITY OF STRONGLY CHARGED 
LYOPHOBIC SOLS AND OF THE ADHESION OF STRONGLY CHARGED-PARTICLES IN 
SOLUTIONS OF ELECTROLYTES. Progress in Surface Science, 1993. 43(1-4): p. 30-59. 

16. Verwey, E.J.W., THEORY OF THE STABILITY OF LYOPHOBIC COLLOIDS. Journal of 
Physical and Colloid Chemistry, 1947. 51(3): p. 631-636. 

17. Stern, O., The theory of the electrolytic double shift. Zeitschrift Fur Elektrochemie Und 
Angewandte Physikalische Chemie, 1924. 30: p. 508-516. 

18. Grahame, D.C., THE ELECTRICAL DOUBLE LAYER AND THE THEORY OF 
ELECTROCAPILLARITY. Chemical Reviews, 1947. 41(3): p. 441-501. 

19. Butt, H.J.G., K.; Kappl, M., Physics and Chemistry of Interfaces. 2006, Weinheim: 
Wiley-VCH. 

20. Russel, W.B., D. A. Saville, and W.R. Schowalter., Colloidal Dispersions. 1989: 
Cambridge University Press. 

21. Goodwin, J.W., et al., STUDIES ON PREPARATION AND CHARACTERIZATION OF 
MONODISPERSE POLYSTYRENE LATTICES .3. PREPARATION WITHOUT ADDED 
SURFACE-ACTIVE AGENTS. Colloid and Polymer Science, 1974. 252(6): p. 464-471. 

22. Oettel, M. and S. Dietrich, Colloidal Interactions at Fluid Interfaces†. Langmuir, 2008. 
24(4): p. 1425-1441. 

23. Oettel, M., A. Domínguez, and S. Dietrich, Attractions between charged colloids at 
water interfaces. Journal of Physics: Condensed Matter, 2005. 17(32): p. L337. 

24. Maestro, A., et al., Contact angle of micro- and nanoparticles at fluid interfaces. 
Current Opinion in Colloid & Interface Science, 2014. 19(4): p. 355-367. 

25. Paunov, V.N., et al., LATERAL CAPILLARY FORCES BETWEEN FLOATING 
SUBMILLIMETER PARTICLES. Journal of Colloid and Interface Science, 1993. 157(1): p. 
100-112. 

26. Danov, K.D. and P.A. Kralchevsky, Capillary forces between particles at a liquid 
interface: General theoretical approach and interactions between capillary 
multipoles. Advances in Colloid and Interface Science, 2010. 154(1–2): p. 91-103. 

27. Stamou, D., C. Duschl, and D. Johannsmann, Long-range attraction between colloidal 
spheres at the air-water interface: The consequence of an irregular meniscus. Physical 
Review E, 2000. 62(4): p. 5263-5272. 

28. Kralchevsky, P.A. and K. Nagayama, Capillary interactions between particles bound to 
interfaces, liquid films and biomembranes. Advances in Colloid and Interface Science, 
2000. 85(2–3): p. 145-192. 

29. Poon, W.C.K., The physics of a model colloid–polymer mixture. Journal of Physics: 
Condensed Matter, 2002. 14(33): p. R859. 



 

131 
 

30. Oversteegen, S.M. and H.N.W. Lekkerkerker, On the accuracy of the Derjaguin 
approximation for depletion potentials. Physica A: Statistical Mechanics and its 
Applications, 2004. 341(0): p. 23-39. 

31. Tuinier, R., J. Rieger, and C.G. de Kruif, Depletion-induced phase separation in colloid–
polymer mixtures. Advances in Colloid and Interface Science, 2003. 103(1): p. 1-31. 

32. Jenkins, P. and M. Snowden, Depletion flocculation in colloidal dispersions. Advances 
in Colloid and Interface Science, 1996. 68: p. 57-96. 

33. Napper, D.H., Steric stabilization. Journal of Colloid and Interface Science, 1977. 
58(2): p. 390-407. 

34. Goldenberg, L.M., et al., Ordered Arrays of large latex particles organized by vertical 
deposition. Langmuir, 2002. 18(8): p. 3319-3323. 

35. Malaquin, L., et al., Controlled particle placement through convective and capillary 
assembly. Langmuir, 2007. 23(23): p. 11513-11521. 

36. Chen, K.M., et al., Selective self-organization of colloids on patterned polyelectrolyte 
templates. Langmuir, 2000. 16(20): p. 7825-7834. 

37. Arutinov, G., S.B. Brichkin, and V.F. Razumov, Self-Assembling of polystyrene 
microsphere monolayers by spin-coating. Nanotechnologies in Russia, 2010. 5(1-2): p. 
67-72. 

38. Chen, J., et al., Controllable fabrication of 2D colloidal-crystal films with polystyrene 
nanospheres of various diameters by spin-coating. Applied Surface Science, 2013. 
270: p. 6-15. 

39. van Duffel, B., et al., Langmuir-Blodgett deposition and optical diffraction of two-
dimensional opal. Journal of Materials Chemistry, 2001. 11(12): p. 3333-3336. 

40. Vogel, N., et al., A Convenient Method to Produce Close- and Non-close-Packed 
Monolayers using Direct Assembly at the Air-Water Interface and Subsequent Plasma-
Induced Size Reduction. Macromolecular Chemistry and Physics, 2011. 212(16): p. 
1719-1734. 

41. Meng, X. and D. Qiu, Gas-Flow-Induced Reorientation to Centimeter-Sized Two-
Dimensional Colloidal Single Crystal of Polystyrene Particle. Langmuir, 2014. 30(11): p. 
3019-3023. 

42. Wen, T. and S.A. Majetich, Ultra-Large-Area Self-Assembled Mono layers of 
Nanoparticles. Acs Nano, 2011. 5(11): p. 8868-8876. 

43. Edwards, T.D. and M.A. Bevan, Controlling Colloidal Particles with Electric Fields. 
Langmuir, 2014. 30(36): p. 10793-10803. 

44. Tracy, J.B. and T.M. Crawford, Magnetic field-directed self-assembly of magnetic 
nanoparticles. MRS Bulletin, 2013. 38(11): p. 915-920. 



 

132 
 

45. Haes, A.J. and R.P. Van Duyne, A unified view of propagating and localized surface 
plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2004. 379(7-
8): p. 920-930. 

46. Martines, E., et al., Superhydrophobicity and superhydrophilicity of regular 
nanopatterns. Nano Letters, 2005. 5(10): p. 2097-2103. 

47. Cheng, Y.T. and D.E. Rodak, Is the lotus leaf superhydrophobic? Applied Physics 
Letters, 2005. 86(14). 

48. Guo, Z., W. Liu, and B.-L. Su, Superhydrophobic surfaces: From natural to biomimetic 
to functional. Journal of Colloid and Interface Science, 2011. 353(2): p. 335-355. 

49. NEINHUIS, C. and W. BARTHLOTT, Characterization and Distribution of Water-
repellent, Self-cleaning Plant Surfaces. Annals of Botany, 1997. 79(6): p. 667-677. 

50. Kosiorek, A., et al., Shadow Nanosphere Lithography:  Simulation and Experiment. 
Nano Letters, 2004. 4(7): p. 1359-1363. 

51. Zhang, J., et al., Colloidal Self-Assembly Meets Nanofabrication: From Two-
Dimensional Colloidal Crystals to Nanostructure Arrays. Advanced Materials, 2010. 
22(38): p. 4249-4269. 

52. Haes, A.J., et al., A localized surface plasmon resonance biosensor: First steps toward 
an assay for Alzheimer's disease. Nano Letters, 2004. 4(6): p. 1029-1034. 

53. Kitaev, V. and G.A. Ozin, Self-assembled surface patterns of binary colloidal crystals. 
Advanced Materials, 2003. 15(1): p. 75-+. 

54. Velikov, K.P., et al., Layer-by-layer growth of binary colloidal crystals. Science, 2002. 
296(5565): p. 106-109. 

55. Detrich, A., et al., Langmuir and Langmuir-Blodgett Films of Bidisperse Silica 
Nanoparticles. Langmuir, 2010. 26(4): p. 2694-2699. 

56. Vogel, N., et al., Wafer-Scale Fabrication of Ordered Binary Colloidal Monolayers with 
Adjustable Stoichiometries. Advanced Functional Materials, 2011. 21(16): p. 3064-
3073. 

57. Staudt, T., et al., Magnetic Polymer/Nickel Hybrid Nanoparticles Via Miniemulsion 
Polymerization. Macromolecular Chemistry and Physics, 2013. 214(19): p. 2213-2222. 

58. Vogel, N., et al., Accurate Elemental Analysis of Metal-Containing Polymer Latexes 
Using ICP-Optical Emission Spectrometry. Macromolecular Chemistry and Physics, 
2010. 211(12): p. 1355-1368. 

59. Yin, Y., et al., Template-Assisted Self-Assembly:  A Practical Route to Complex 
Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and 
Structures. Journal of the American Chemical Society, 2001. 123(36): p. 8718-8729. 



 

133 
 

60. Yang, P.a.D., Tao and Zhao, Dongyuan and Feng, Pingyun and Pine, David and 
Chmelka, Bradley F. and Whitesides, George M. and Stucky, Galen D., Hierarchically 
Ordered Oxides. Science, 1998. 282: p. 2244-2246. 

61. Bellido, E., et al., Structuration and Integration of Magnetic Nanoparticles on Surfaces 
and Devices. Small, 2012. 8(10): p. 1465-1491. 

62. Confalonieri, G.A.B., et al., Template-assisted self-assembly of individual and clusters 
of magnetic nanoparticles. Nanotechnology, 2011. 22(28): p. 285608. 

63. Xia, Y., et al., Unconventional Methods for Fabricating and Patterning 
Nanostructures. Chemical Reviews, 1999. 99(7): p. 1823-1848. 

64. Hanske, C., et al., Strongly Coupled Plasmonic Modes on Macroscopic Areas via 
Template-Assisted Colloidal Self-Assembly. Nano Letters, 2014. 14(12): p. 6863-6871. 

65. Ye, Y.H., et al., Self-assembly of colloidal spheres on patterned substrates. Applied 
Physics Letters, 2001. 79(6): p. 872-874. 

66. Rycenga, M., P.H.C. Camargo, and Y. Xia, Template-assisted self-assembly: a versatile 
approach to complex micro- and nanostructures. Soft Matter, 2009. 5(6): p. 1129-
1136. 

67. Varghese, B., et al., Size Selective Assembly of Colloidal Particles on a Template by 
Directed Self-Assembly Technique. Langmuir, 2006. 22(19): p. 8248-8252. 

68. Mammen, L., et al., Functional superhydrophobic surfaces made of Janus micropillars. 
Soft Matter, 2015. 11(3): p. 506-515. 

69. Tien, J., A. Terfort, and G.M. Whitesides, Microfabrication through Electrostatic Self-
Assembly. Langmuir, 1997. 13(20): p. 5349-5355. 

70. Fulda, K.U. and B. Tieke, Monolayers of mono- and bidisperse spherical polymer 
particles at the air/water interface and Langmuir-Blodgett layers on solid substrates. 
Supramolecular Science, 1997. 4(3-4): p. 265-273. 

71. Srivastava, S., et al., Tunable Nanoparticle Arrays at Charged Interfaces. ACS Nano, 
2014. 8(10): p. 9857-9866. 

72. Sciortino, F., et al., Self-assembly of patchy particles into polymer chains: A 
parameter-free comparison between Wertheim theory and Monte Carlo simulation. 
Journal of Chemical Physics, 2007. 126(19). 

73. Edwards, E.W., D. Wang, and H. Mohwald, Hierarchical organization of colloidal 
particles: From colloidal crystallization to supraparticle chemistry. Macromolecular 
Chemistry and Physics, 2007. 208(5): p. 439-445. 

74. Zhang and S.C. Glotzer, Self-Assembly of Patchy Particles. Nano Letters, 2004. 4(8): p. 
1407-1413. 



 

134 
 

75. Niemeyer, C.M. and U. Simon, DNA-Based Assembly of Metal Nanoparticles. 
European Journal of Inorganic Chemistry, 2005. 2005(18): p. 3641-3655. 

76. Taton, T.A., et al., The DNA-Mediated Formation of Supramolecular Mono- and 
Multilayered Nanoparticle Structures. Journal of the American Chemical Society, 
2000. 122(26): p. 6305-6306. 

77. Lalander, C.H., et al., DNA-Directed Self-Assembly of Gold Nanoparticles onto 
Nanopatterned Surfaces: Controlled Placement of Individual Nanoparticles into 
Regular Arrays. ACS Nano, 2010. 4(10): p. 6153-6161. 

78. Mirkin, C.A., et al., A DNA-based method for rationally assembling nanoparticles into 
macroscopic materials. Nature, 1996. 382(6592): p. 607-609. 

79. Wang, Y., et al., Colloids with valence and specific directional bonding. Nature, 2012. 
491(7422): p. 51-55. 

80. Yi, G.-R., D.J. Pine, and S. Sacanna, Recent progress on patchy colloids and their self-
assembly. Journal of Physics-Condensed Matter, 2013. 25(19). 

81. Glotzer, S.C. and M.J. Solomon, Anisotropy of building blocks and their assembly into 
complex structures. Nat Mater, 2007. 6(7): p. 557-562. 

82. Kraft, D.J., et al., Surface roughness directed self-assembly of patchy particles into 
colloidal micelles. Proceedings of the National Academy of Sciences of the United 
States of America, 2012. 109(27): p. 10787-10792. 

83. Pawar, A.B. and I. Kretzschmar, Fabrication, Assembly, and Application of Patchy 
Particles. Macromolecular Rapid Communications, 2010. 31(2): p. 150-168. 

84. Langmuir, I., The constitution and fundamental properties of solids and liquids. II. 
Liquids. Journal of the American Chemical Society, 1917. 39: p. 1848-1906. 

85. Blodgett, K.B., Monomolecular films of fatty acids on glass. Journal of the American 
Chemical Society, 1934. 56: p. 495-495. 

86. Dervichian, D.G., Changes of Phase and Transformations of Higher Order in 
Monolayers. The Journal of Chemical Physics, 1939. 7(10): p. 931-948. 

87. Vollhardt, D., Morphology and phase behavior of monolayers. Advances in Colloid 
and Interface Science, 1996. 64(0): p. 143-171. 

88. Blodgett, K.B., Films built by depositing successive monomolecular layers on a solid 
surface. Journal of the American Chemical Society, 1935. 57(1): p. 1007-1022. 

89. Langmuir, I. and V.J. Schaefer, The Effect of Dissolved Salts on Insoluble Monolayers. 
Journal of the American Chemical Society, 1937. 59(11): p. 2400-2414. 

90. Langmuir, I. and V.J. Schaefer, Built-up films of proteins and their properties. Science, 
1937. 85: p. 76-80 



 

135 
 

 

91. Knoll, M., Charge potential and secondary emissions of electron irradiated bodies. 
Physikalische Zeitschrift, 1935. 36: p. 861-869. 

92. Binnig, G., C.F. Quate, and C. Gerber, ATOMIC FORCE MICROSCOPE. Physical Review 
Letters, 1986. 56(9): p. 930-933. 

93. Vogel, N., et al., Direct visualization of the interfacial position of colloidal particles 
and their assemblies. Nanoscale, 2014. 6(12): p. 6879-6885. 

94. Lyklema, J., Fundamentals of Interface and Colloid Science. Vol. III. 2000: Academic 
Press. 

95. Dinsmore, A.D., et al., Colloidosomes: Selectively Permeable Capsules Composed of 
Colloidal Particles. Science, 2002. 298(5595): p. 1006-1009. 

96. Binks, B.P., Particles as surfactants - similarities and differences. Current Opinion in 
Colloid & Interface Science, 2002. 7(1-2): p. 21-41. 

97. Ding, A.L., B.P. Binks, and W.A. Goedel, Influence of particle hydrophobicity on 
particle-assisted wetting. Langmuir, 2005. 21(4): p. 1371-1376. 

98. Ding, A.L. and W.A. Goedel, Experimental investigation of particle-assisted wetting. 
Journal of the American Chemical Society, 2006. 128(15): p. 4930-4931. 

99. McGorty, R., et al., Colloidal self-assembly at an interface. Materials Today, 2010. 
13(6): p. 34-42. 

100. Vogel, N., C.K. Weiss, and K. Landfester, From soft to hard: the generation of 
functional and complex colloidal monolayers for nanolithography. Soft Matter, 2012. 
8: p. 4044-4061. 

101. Kolle, M., et al., Mimicking the colourful wing scale structure of the Papilio blumei 
butterfly. Nature Nano, 2010. 5(7): p. 511-515. 

102. Romanov, S.G., et al., Probing guided modes in a monolayer colloidal crystal on a flat 
metal film. Physical Review B, 2012. 86(19): p. 195145. 

103. Bley, K., et al., Switching light with light - advanced functional colloidal monolayers. 
Nanoscale, 2014. 6(1): p. 492-502. 

104. Manzke, A., et al., Formation of highly ordered alloy nanoparticles based on 
precursor-filled latex spheres. Chem.Mater., 2012. 24: p. 1048-1054. 

105. Manzke, A., et al., Arrays of size and distance controlled platinum nanoparticles 
fabricated by a colloidal method. Nanoscale, 2011. 3(6): p. 2523-2528. 

106. Wang, W.G., et al., Parallel fabrication of magnetic tunnel junction nanopillars by 
nanosphere lithography. Sci. Rep., 2013. 3. 



 

136 
 

107. Shiu, J.-Y., et al., Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere 
Lithography. Chemistry of Materials, 2004. 16(4): p. 561-564. 

108. Li, Y., et al., Biomimetic Surfaces for High-Performance Optics. Advanced Materials, 
2009. 21(46): p. 4731-4734. 

109. Vogel, N., et al., Transparency and damage tolerance of patternable omniphobic 
lubricated surfaces based on inverse colloidal monolayers. Nat Commun, 2013. 4. 

110. Xu, L. and J. He, Fabrication of Highly Transparent Superhydrophobic Coatings from 
Hollow Silica Nanoparticles. Langmuir, 2012. 28(19): p. 7512-7518. 

111. Haynes, C.L. and R.P. Van Duyne, Nanosphere Lithography:  A Versatile 
Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. 
Chem. B, 2001. 105(24): p. 5599-5611. 

112. Anker, J.N., et al., Biosensing with plasmonic nanosensors. Nature Mater., 2008. 7(6): 
p. 442-453. 

113. Vogel, N., et al., Reusable Localized Surface Plasmon Sensors Based on Ultrastable 
Nanostructures. Small, 2010. 6(1): p. 104-109. 

114. Battaglia, C., et al., Light Trapping in Solar Cells: Can Periodic Beat Random? ACS 
Nano, 2012. 6(3): p. 2790-2797. 

115. Zhu, J., et al., Nanodome Solar Cells with Efficient Light Management and Self-
Cleaning. Nano Letters, 2010. 10(6): p. 1979-1984. 

116. Raccis, R., et al., Confined Diffusion in Periodic Porous Nanostructures. Acs Nano, 
2011. 5(6): p. 4607-4616. 

117. Jung, M., N. Vogel, and I. Koeper, Nanoscale Patterning of Solid Supported Lipid 
Bilayer Membranes by Integrated Diffusion Barriers. Langmuir, 2011. 27(11): p. 7008. 

118. Yunker, P.J., et al., Suppression of the coffee-ring effect by shape-dependent capillary 
interactions. Nature, 2011. 476(7360): p. 308-311. 

119. Kaz, D.M., et al., Physical ageing of the contact line on colloidal particles at liquid 
interfaces. Nature Mater., 2012. 11(2): p. 138-142. 

120. Manoharan, V.N., M.T. Elsesser, and D.J. Pine, Dense packing and symmetry in small 
clusters of microspheres. Science, 2003. 301(5632): p. 483-487. 

121. Paunov, V.N., Novel Method for Determining the Three-Phase Contact Angle of 
Colloid Particles Adsorbed at Air−Water and Oil−Water Interfaces. Langmuir, 2003. 
19(19): p. 7970-7976. 

122. Isa, L., et al., Measuring single-nanoparticle wetting properties by freeze-fracture 
shadow-casting cryo-scanning electron microscopy. Nat Commun, 2011. 2: p. 438. 



 

137 
 

123. Binks, B.P., L. Isa, and A.T. Tyowua, Direct Measurement of Contact Angles of Silica 
Particles in Relation to Double Inversion of Pickering Emulsions. Langmuir, 2013. 
29(16): p. 4923-4927. 

124. Cayre, O.J. and V.N. Paunov, Contact angles of colloid silica and gold particles at air-
water and oil-water interfaces determined with the gel trapping technique. Langmuir, 
2004. 20(22): p. 9594-9599. 

125. Paunov, V.N. and O.J. Cayre, Supraparticles and "Janus" particles fabricated by 
replication of particle monolayers at liquid surfaces using a gel trapping technique. 
Advanced Materials, 2004. 16(9-10): p. 788-791. 

126. Mankidy, P.J., R. Rajagopalan, and H.C. Foley, Facile catialytic growth of 
cyanoacrylate nanofibers. Chem. Commun, 2006: p. 1139-1141. 

127. Ryan, B. and G. McCann, Novel sub-ceiling temperature rapid depolymerization-
repolymerization reaction of cyanoacrylate polymers. Macromol. Rapid Commun., 
1996. 17: p. 217-227. 

128. Kulkarni, R.K., D.E. Bartak, and F. Leonard, Initiation of Polymerization of Alkyl 2-
Cyanoacrylates in Aqueous Solution of Glycine and Its Derivatives. J. Polym. Sci.: Part 
A-1, 1971. 9: p. 2977-2981. 

129. Weiss, C.K., U. Ziener, and K. Landfester, A route to non-functionalized and 
functionalized poly (n-butylcyanoacrylate) nanoparticles: preparation in 
miniemulsion. Macromolecules, 2007. 40: p. 928-938. 

130. Pepper, D.C. and B. Ryan, Initiation Process in Polymerization of Alkyl Cyanoacrylates 
by Tertiary Amines: Inhibition by Strong Acids. Makromol. Chem., 1983. 184: p. 383-
394. 

131. Ducker, W.A., T.J. Senden, and R.M. Pashley, Direct measurement of colloidal forces 
using an atomic force microscope. Nature, 1991. 353(6341): p. 239-241. 

132. Butt, H.-J., Measuring electrostatic, van der Waals, and hydration forces in electrolyte 
solutions with an atomic force microscope. Biophys. J., 1991. 60(6): p. 1438-1444. 

133. Preuss, M. and H.-J. Butt, Measuring the Contact Angle of Individual Colloidal 
Particles. J. Colloid Interf. Sci., 1998. 208(2): p. 468-477. 

134. Pradip, et al., Polymer-polymer complexation in dilute aqueous solutions: poly(acrylic 
acid)-poly(ethylene oxide) and poly(acrylic acid)-poly(vinylpyrrolidone). Langmuir, 
1991. 7(10): p. 2108-2111. 

135. Park, B.J., et al., Direct measurements of the effects of salt and surfactant on 
interaction forces between colloidal particles at water-oil interfaces. Langmuir, 2008. 
24(5): p. 1686-1694. 

136. Park, B.J., J. Vermant, and E.M. Furst, Heterogeneity of the electrostatic repulsion 
between colloids at the oil-water interface. Soft Matter, 2010. 6(21): p. 5327-5333. 



 

138 
 

137. Akcora, P., et al., Anisotropic self-assembly of spherical polymer-grafted 
nanoparticles. Nature Materials, 2009. 8(4): p. 354-9. 

138. Ghezzi, F., et al., Pattern formation in colloidal monolayers at the air-water interface. 
Journal of Colloid and Interface Science, 2001. 238(2): p. 433-446. 

139. Lafitte, T., S.K. Kumar, and A.Z. Panagiotopoulos, Self-assembly of polymer-grafted 
nanoparticles in thin films. Soft Matter, 2014. 10(5): p. 786-794. 

140. Ghezzi, F. and J.C. Earnshaw, Formation of meso-structures in colloidal monolayers. 
Journal of Physics-Condensed Matter, 1997. 9(37): p. L517-L523. 

141. Chen, W., et al., Measured long-ranged attractive interaction between charged 
polystyrene latex spheres at a water-air interface. Physical Review E, 2006. 74(2). 

142. Fernández-Toledano, J.C., et al., Spontaneous Formation of Mesostructures in 
Colloidal Monolayers Trapped at the Air−Water Interface:  A Simple Explanation. 
Langmuir, 2004. 20(17): p. 6977-6980. 

143. Hansen, F.K. and J. Ugelstad, PARTICLE NUCLEATION IN EMULSION POLYMERIZATION 
.1. THEORY FOR HOMOGENEOUS NUCLEATION. Journal of Polymer Science Part a-
Polymer Chemistry, 1978. 16(8): p. 1953-1979. 

144. Hansen, F.K. and J. Ugelstad, PARTICLE NUCLEATION IN EMULSION POLYMERIZATION 
.2. NUCLEATION IN EMULSIFIER-FREE SYSTEMS INVESTIGATED BY SEED 
POLYMERIZATION. Journal of Polymer Science Part a-Polymer Chemistry, 1979. 
17(10): p. 3033-3045. 

145. Maxwell, I.A., et al., Entry of free radicals into latex particles in emulsion 
polymerization. Macromolecules, 1991. 24(7): p. 1629-1640. 

146. Reynaert, S., P. Moldenaers, and J. Vermant, Control over colloidal aggregation in 
monolayers of latex particles at the oil-water interface. Langmuir, 2006. 22(11): p. 
4936-4945. 

147. Alexandridis, P. and T. Alan Hatton, Poly(ethylene oxide) poly(propylene oxide)
poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at 
interfaces: thermodynamics, structure, dynamics, and modeling. Colloids and 
Surfaces A: Physicochemical and Engineering Aspects, 1995. 96(1–2): p. 1-46. 

148. Álvarez-Ramírez, J.G., et al., Phase behavior of the Pluronic P103/water system in the 
dilute and semi-dilute regimes. Journal of Colloid and Interface Science, 2009. 333(2): 
p. 655-662. 

149. Wanka, G., H. Hoffmann, and W. Ulbricht, Phase Diagrams and Aggregation Behavior 
of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in 
Aqueous Solutions. Macromolecules, 1994. 27(15): p. 4145-4159. 

150. Zhou, S., et al., One-Dimensional Assembly of Silica Nanospheres: Effects of Nonionic 
Block Copolymers. Langmuir, 2012. 28(37): p. 13181-13188. 



 

139 
 

151. Wang, J., et al., Chain-like nanostructures from anisotropic self-assembly of 
semiconducting metal oxide nanoparticles with a block copolymer. Chemical 
Communications, 2012. 48(90): p. 11115-11117. 

152. Langmuir, I., Two-dimensional gases, liquids and solids. Science, 1936. 84(2183): p. 
379-383. 

153. Patil, G.S., D.G. Cornwell, and R.H. Matthews, EFFECT OF IONIZATION AND CATION 
SELECTIVITY ON EXPANSION OF STEARIC ACID MONOLAYERS. Journal of Lipid 
Research, 1972. 13(5): p. 574-&. 

154. Tomoaia-Cotişel, M., et al., Insoluble mixed monolayers: III. The ionization 
characteristics of some fatty acids at the air/water interface. Journal of Colloid and 
Interface Science, 1987. 117(2): p. 464-476. 

155. Rager, T., W.H. Meyer, and G. Wegner, Micelle formation of poly(acrylic acid)-block-
poly(methyl methacrylate) block copolymers in mixtures of water with organic 
solvents. Macromolecular Chemistry and Physics, 1999. 200(7): p. 1672-1680. 

156. Rager, T., et al., Block copolymer micelles as seed in emulsion polymerization. 
Macromolecular Chemistry and Physics, 1999. 200(7): p. 1681-1691. 

157. Schmidle, H., et al., Phase diagram of two-dimensional systems of dipole-like colloids. 
Soft Matter, 2012. 8(5): p. 1521-1531. 

158. Niwa, M., N. Katsurada, and N. Higashi, Formation of a surface monolayer and built-
up multilayer from a well-defined amphiphilic block copolymer. Macromolecules, 
1988. 21(6): p. 1878-1880. 

159. Wypych, G., Handbook of polymers. 2012: ChemTec Publishing. 

160. Physical Properties of Polymers Handbook, ed. J.E. Mark. 2007: Springer. 

161. Onoda, G.Y., Direct observation of two-dimensional, dynamic clustering and ordering 
with colloids. Physical Review Letters, 1985. 55(2): p. 226-229. 

162. Hurd, A.J. and D.W. Schaefer, Diffusion-Limited Aggregation in Two Dimensions. 
Physical Review Letters, 1985. 54(10): p. 1043-1046. 

163. Ohno, K., et al., Suspensions of Silica Particles Grafted with Concentrated Polymer 
Brush:  Effects of Graft Chain Length on Brush Layer Thickness and Colloidal 
Crystallization. Macromolecules, 2007. 40(25): p. 9143-9150. 

164. Spatz, J.P., et al., Ordered Deposition of Inorganic Clusters from Micellar Block 
Copolymer Films. Langmuir, 2000. 16(2): p. 407-415. 

165. Mahynski, N.A., S.K. Kumar, and A.Z. Panagiotopoulos, Tuning polymer architecture 
to manipulate the relative stability of different colloid crystal morphologies. Soft 
Matter, 2015. 11(25): p. 5146-5153. 



 

140 
 

166. Mahynski, N.A. and A.Z. Panagiotopoulos, Grafted nanoparticles as soft patchy 
colloids: Self-assembly versus phase separation. Journal of Chemical Physics, 2015. 
142(7). 

167. Furukawa, H., et al., Light-Controlled On-Off Switch of a Fluorescent Nanoparticle. 
Macromolecular Rapid Communications, 2008. 29(7): p. 547-551. 

168. Landfester, K. and C.K. Weiss, Encapsulation by Miniemulsion Polymerization. 
Advances in Polymer Science, 2010. 229: p. 1-49. 

169. Weiss, C.K. and K. Landfester, Miniemulsion Polymerization as a Means to 
Encapsulate Organic and Inorganic Materials. Advances in Polymer Science, 2010. 
233: p. 185-236. 

170. Hansen, F.K. and J. Ugelstad, Particle Nucleation in Emulsion Polymerization 3. 
Nucleation in Systems With Anionic Emulsifier Investigated by Seeded and Unseeded 
Polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 1979. 17(10): 
p. 3047-3067. 

171. Kong, X.Z. and E. Ruckenstein, Core–shell latex particles consisting of polysiloxane–
poly(styrene-methyl methacrylate-acrylic acid): Preparation and pore generation. 
Journal of Applied Polymer Science, 1999. 73(11): p. 2235-2245. 

172. Fukaminato, T., et al., Photochromism of diarylethene single molecules in polymer 
matrices. Journal of the American Chemical Society, 2007. 129(18): p. 5932-5938. 

173. Nakamura, S., et al., Theoretical investigation on photochromic diarylethene: A short 
review. Journal of Photochemistry and Photobiology a-Chemistry, 2008. 200(1): p. 10-
18. 

174. Li, Z.Y., H. Cheng, and C.C. Han, Mechanism of Narrowly Dispersed Latex Formation in 
a Surfactant-Free Emulsion Polymerization of Styrene in Acetone-Water Mixture. 
Macromolecules, 2012. 45(7): p. 3231-3239. 

175. Vogel, N., et al., Wafer-Scale Fabrication of Ordered Binary Colloidal Monolayers with 
Adjustable Stoichiometries. Adv. Funct. Mater., 2011. 21(16): p. 3064-3073. 

176. CRC Chemical Handbook of Chemistry and Physics. 94th ed. 2013. 

177. Irie, M. and M. Morimoto, Photochromic diarylethene molecules and crystals. Pure 
and Applied Chemistry, 2009. 81(9): p. 1655-1665. 

178. Lerch, S., et al., Nanoprobing the acidification process during intracellular uptake and 
trafficking. Nanomedicine: Nanotechnology, Biology and Medicine, (0). 

179. Clark, H.A., et al., Optochemical Nanosensors and Subcellular Applications in Living 
Cells. Microchimica Acta, 1999. 131(1): p. 121-128. 

180. Kreft, O., et al., Polymer microcapsules as mobile local pH-sensors. Journal of 
Materials Chemistry, 2007. 17(42): p. 4471-4476. 



 

141 
 

181. Park, E.J., et al., Ratiometric optical PEBBLE nanosensors for real-time magnesium ion 
concentrations inside viable cells. Anal. Chem., 2003. 75(15): p. 3784-3791. 

182. Almdal, K., et al., Erratum: Fluorescent gel particles in the nanometer range for 
detection of metabolites in living cells. Polymers for Advanced Technologies, 2007. 
18(12): p. 1020-1020. 

183. Koo Yong-Eun, L., et al., Photonic Explorers Based on Multifunctional Nanoplatforms: 
In Vitro and In Vivo Biomedical Applications, in New Approaches in Biomedical 
Spectroscopy. 2007, American Chemical Society. p. 200-218. 

184. Iversen, T.-G., T. Skotland, and K. Sandvig, Endocytosis and intracellular transport of 
nanoparticles: Present knowledge and need for future studies. Nano Today, 2011. 
6(2): p. 176-185. 

185. Maeda, K., Y. Kato, and Y. Sugiyama, pH-dependent receptor/ligand dissociation as a 
determining factor for intracellular sorting of ligands for epidermal growth factor 
receptors in rat hepatocytes. Journal of Controlled Release, 2002. 82(1): p. 71-82. 

186. Tannock, I.F. and D. Rotin, Acid pH in Tumors and Its Potential for Therapeutic 
Exploitation. Cancer Research, 1989. 49(16): p. 4373-4384. 

187. Lerch, S., et al., Nanoprobing the acidification process during intracellular uptake and 
trafficking. Nanomedicine: Nanotechnology, Biology and Medicine, 2015(0). 

188. Ganachaud, F., et al., Surface characterisation of amine-containing latexes by charge 
titration and contact angle measurements. Colloids and Surfaces a-Physicochemical 
and Engineering Aspects, 1998. 137(1-3): p. 141-154. 

189. Sauzedde, F., et al., Emulsifier-free emulsion copolymerization of styrene with two 
different amino-containing monomers .2. Surface and colloidal characterization. 
Journal of Applied Polymer Science, 1997. 65(12): p. 2331-2342. 

190. Lerch, S., Uptake mechanism, intracellular trafficking and endo-isosomal pH 
monitoring of polystyrene nanoparticles. 2011, Johannes Gutenber-Universität Mainz. 

191. Zhang, F., et al., Ion and pH Sensing with Colloidal Nanoparticles: Influence of Surface 
Charge on Sensing and Colloidal Properties. Chemphyschem, 2010. 11(3): p. 730-735. 

192. Owen, C.S., et al., pH-dependent intracellular quenching of the indicator carboxy-
SNARF-1. Journal of Fluorescence, 1992. 2(2): p. 75-80. 

193. Akiyuki Takahashi, Y.Z., Victoria E. Centonze and Brian Herman, Measurement of 
Mitochondrial pH In Situ. BioTechniques, 2001. 30: p. 804-815. 

194. Seksek, O. and J. Bolard, Nuclear pH gradient in mammalian cells revealed by laser 
microspectrofluorimetry. Journal of Cell Science, 1996. 109: p. 257-262. 



 

142 
 

195. Nett, W. and J.W. Deitmer, Simultaneous measurements of intracellular pH in the 
leech giant glial cell using 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein and ion-
sensitive microelectrodes. Biophysical Journal, 1996. 71(1): p. 394-402. 

196. Tafani, M., et al., Regulation of Intracellular pH Mediates Bax Activation in HeLa Cells 
Treated with Staurosporine or Tumor Necrosis Factor-α. Journal of Biological 
Chemistry, 2002. 277(51): p. 49569-49576. 

197. Rybak, S.L. and R.F. Murphy, Primary cell cultures from murine kidney and heart differ 
in endosomal pH. Journal of Cellular Physiology, 1998. 176(1): p. 216-222. 

198. Cain, C.C., D.M. Sipe, and R.F. Murphy, REGULATION OF ENDOCYTIC PH BY THE 
NA+,K+-ATPASE IN LIVING CELLS. Proceedings of the National Academy of Sciences of 
the United States of America, 1989. 86(2): p. 544-548. 

199. Bucci, C., et al., RAB5A IS A COMMON COMPONENT OF THE APICAL AND 
BASOLATERAL ENDOCYTIC MACHINERY IN POLARIZED EPITHELIAL-CELLS. Proceedings 
of the National Academy of Sciences of the United States of America, 1994. 91(11): p. 
5061-5065. 

200. Vonderheit, A. and A. Helenius, Rab7 associates with early endosomes to mediate 
sorting and transport of semliki forest virus to late endosomes. Plos Biology, 2005. 
3(7): p. 1225-1238. 

201. Lombardi, D., et al., RAB9 FUNCTIONS IN TRANSPORT BETWEEN LATE ENDOSOMES 
AND THE TRANS GOLGI NETWORK. Embo Journal, 1993. 12(2): p. 677-682. 

202. Sandin, P., et al., High-Speed Imaging of Rab Family Small GTPases Reveals Rare 
Events in Nanoparticle Trafficking in Living Cells. Acs Nano, 2012. 6(2): p. 1513-1521. 

203. Marshansky, V. and M. Futai, The V-type H+-ATPase in vesicular trafficking: targeting, 
regulation and function. Current Opinion in Cell Biology, 2008. 20(4): p. 415-426. 

204. Han, J. and K. Burgess, Fluorescent Indicators for Intracellular pH. Chemical Reviews, 
2010. 110(5): p. 2709-2728. 

205. Ganachaud, F., et al., PREPARATION AND CHARACTERIZATION OF CATIONIC 
POLYSTYRENE LATEX-PARTICLES OF DIFFERENT AMINATED SURFACE-CHARGES. 
Polymers for Advanced Technologies, 1995. 6(7): p. 480-488. 

206. Musyanovych, A., et al., Effect of Hydrophilic Comonomer and Surfactant Type on the 
Colloidal Stability and Size Distribution of Carboxyl- and Amino-Functionalized 
Polystyrene Particles Prepared by Miniemulsion Polymerization. Langmuir, 2007. 
23(10): p. 5367-5376. 

 


